scholarly journals Nedd4-2-dependent ubiquitination potentiates the inhibition of human NHE3 by Cholera toxin and enteropathogenic E. coli

Author(s):  
Kayte A. Jenkin ◽  
Yiran Han ◽  
Songbai Lin ◽  
Peijian He ◽  
C. Chris Yun
Keyword(s):  
1994 ◽  
Vol 180 (6) ◽  
pp. 2147-2153 ◽  
Author(s):  
M Pizza ◽  
M R Fontana ◽  
M M Giuliani ◽  
M Domenighini ◽  
C Magagnoli ◽  
...  

Escherichia coli enterotoxin (LT) and the homologous cholera toxin (CT) are A-B toxins that cause travelers' diarrhea and cholera, respectively. So far, experimental live and killed vaccines against these diseases have been developed using only the nontoxic B portion of these toxins. The enzymatically active A subunit has not been used because it is responsible for the toxicity and it is reported to induce a negligible titer of toxin neutralizing antibodies. We used site-directed mutagenesis to inactivate the ADP-ribosyltransferase activity of the A subunit and obtained nontoxic derivatives of LT that elicited a good titer of neutralizing antibodies recognizing the A subunit. These LT mutants and equivalent mutants of CT may be used to improve live and killed vaccines against cholera and enterotoxinogenic E. coli.


2016 ◽  
Vol 473 (21) ◽  
pp. 3923-3936 ◽  
Author(s):  
Dani Zalem ◽  
João P. Ribeiro ◽  
Annabelle Varrot ◽  
Michael Lebens ◽  
Anne Imberty ◽  
...  

The structurally related AB5-type heat-labile enterotoxins of Escherichia coli and Vibrio cholerae are classified into two major types. The type I group includes cholera toxin (CT) and E. coli LT-I, whereas the type II subfamily comprises LT-IIa, LT-IIb and LT-IIc. The carbohydrate-binding specificities of LT-IIa, LT-IIb and LT-IIc are distinctive from those of cholera toxin and E. coli LT-I. Whereas CT and LT-I bind primarily to the GM1 ganglioside, LT-IIa binds to gangliosides GD1a, GD1b and GM1, LT-IIb binds to the GD1a and GT1b gangliosides, and LT-IIc binds to GM1, GM2, GM3 and GD1a. These previous studies of the binding properties of type II B-subunits have been focused on ganglio core chain gangliosides. To further define the carbohydrate binding specificity of LT-IIb B-subunits, we have investigated its binding to a collection of gangliosides and non-acid glycosphingolipids with different core chains. A high-affinity binding of LT-IIb B-subunits to gangliosides with a neolacto core chain, such as Neu5Gcα3- and Neu5Acα3-neolactohexaosylceramide, and Neu5Gcα3- and Neu5Acα3-neolactooctaosylceramide was detected. An LT-IIb-binding ganglioside was isolated from human small intestine and characterized as Neu5Acα3-neolactohexaosylceramide. The crystal structure of the B-subunit of LT-IIb with the pentasaccharide moiety of Neu5Acα3-neolactotetraosylceramide (Neu5Ac-nLT: Neu5Acα3Galβ4GlcNAcβ3Galβ4Glc) was determined providing the first information for a sialic-binding site in this subfamily, with clear differences from that of CT and LT-I.


2005 ◽  
Vol 73 (6) ◽  
pp. 3627-3635 ◽  
Author(s):  
Juliette K. Tinker ◽  
Jarrod L. Erbe ◽  
Randall K. Holmes

ABSTRACT Cholera toxin (CT) is an AB5 toxin responsible for the profuse secretory diarrhea resulting from Vibrio cholerae infection. CT consists of a pentameric, receptor-binding B subunit (CTB) and a monomeric A subunit (CTA) that has latent enzymatic activity. In addition to its enterotoxicity, CT has potent mucosal adjuvant activity and can also function as a carrier molecule with many potential applications in cell biology. In earlier studies, the toxic CTA1 domain was replaced by several other antigenic protein domains to produce holotoxin-like chimeras for use as potential mucosal vaccines. In the present study we utilized the twin arginine translocation (tat) system to produce fluorescent CT chimeras, as well as fluorescent chimeras of Escherichia coli heat-labile toxins LTI and LTIIb. Fusion proteins containing either green fluorescent protein (GFP) or monomeric red fluorescent protein (mRFP) and the A2 domain of CT, LTI, or LTIIb were transported to the periplasm of E. coli by the tat system, and the corresponding B polypeptides of CT, LTI, and LTIIb were transported to the periplasm by the sec system. The fluorescent fusion proteins were shown to assemble spontaneously and efficiently with the corresponding B polypeptides in the periplasm to form chimeric holotoxin-like molecules, and these chimeras bound to and entered cultured cells in a manner similar to native CT, LTI, or LTIIb. The GFP and mRFP derivatives of CT, LT, and LTIIb developed here are useful tools for studies on the cell biology of trafficking of the CT/LT family of bacterial enterotoxins. In addition, these constructs provide proof in principle for the development of novel chimeric CT-like or LT-like vaccine candidates containing CTA2 fusion proteins that cannot be delivered to the periplasm of E. coli by use of the sec secretion pathway.


Vaccine ◽  
2001 ◽  
Vol 19 (15-16) ◽  
pp. 2061-2070 ◽  
Author(s):  
Youngjin Byun ◽  
Mari Ohmura ◽  
Kohtaro Fujihashi ◽  
Shingo Yamamoto ◽  
Jerry R. McGhee ◽  
...  

2002 ◽  
Vol 9 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Jason C. Pickens ◽  
Ethan A. Merritt ◽  
Misol Ahn ◽  
Christophe L.M.J. Verlinde ◽  
Wim G.J. Hol ◽  
...  

2000 ◽  
Vol 46 (3) ◽  
pp. 283-290 ◽  
Author(s):  
J Wayne Conlan ◽  
Rhonda KuoLee ◽  
Ann Webb ◽  
Andrew D Cox ◽  
Malcolm B Perry

It has been postulated that a humoral immune response directed against the O157 antigen of Escherichia coli O157:H7, and expressed in the intestine, might afford protection from colonization and consequent infection by this enteric pathogen. The present study was conducted to determine whether such an immune response can be experimentally generated in mice. To this end, mice were orally immunized with a glycoconjugate vaccine consisting of horse serum albumin and the O157 polysaccharide admixed with the mucosal adjuvant, cholera toxin. Mice consistently developed robust local and systemic immune responses to the cholera toxin adjuvant, but were far from uniformly reactive to the test vaccine. Moreover, vaccinated mice were as susceptible to transient intestinal colonization following challenge with an isolate of E. coli O157:H7 as unvaccinated control mice. These results indicate that this vaccination approach is unlikely to be straightforward in target bovine or human hosts.Key words: Escherichia coli O157:H7, glycoconjugate vaccine, mucosal immunity, mice.


Author(s):  
Jan Holmgren ◽  
Ali M. Harandi ◽  
Michael Lebens ◽  
Jia-Bin Sun ◽  
Fabienne Anjuère ◽  
...  
Keyword(s):  
E Coli ◽  

Sign in / Sign up

Export Citation Format

Share Document