Dimensional error of selective laser sintering, three-dimensional printing and PolyJet™ models in the reproduction of mandibular anatomy

2009 ◽  
Vol 37 (3) ◽  
pp. 167-173 ◽  
Author(s):  
Danilo Ibrahim ◽  
Tiago Leonardo Broilo ◽  
Claiton Heitz ◽  
Marília Gerhardt de Oliveira ◽  
Helena Willhelm de Oliveira ◽  
...  
Carbon ◽  
2016 ◽  
Vol 96 ◽  
pp. 603-607 ◽  
Author(s):  
Xu Yi ◽  
Zhou-Jian Tan ◽  
Wan-Jing Yu ◽  
Jun Li ◽  
Bing-Ju Li ◽  
...  

2020 ◽  
Vol 9 (12) ◽  
pp. 4008
Author(s):  
Simon Raveau ◽  
Fabienne Jordana

The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics. They can be monophasic or multiphasic and tend to recreate the architectural structure of the periodontal tissue. In order to enhance the bioactivity and have a higher regeneration, the scaffolds can be embedded with stem cells and/or growth factors. This new technique could enhance a complete periodontal regeneration. This review summarizes the application of 3D printed scaffolds in periodontal regeneration. The process, the materials and designs, the key advantages and prospects of 3D bioprinting are highlighted, providing new ideas for tissue regeneration.


2016 ◽  
Vol 61 (2) ◽  
pp. 891-896 ◽  
Author(s):  
P. Dudek ◽  
A. Rapacz-Kmita

AbstractIn the context of product development, the term rapid prototyping (RP) is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.


2004 ◽  
Vol 860 ◽  
Author(s):  
Nathan B. Crane ◽  
Emanuel M. Sachs ◽  
Andreas Frank

ABSTRACTSolid freeform fabrication (SFF) processes such as three-dimensional printing (3DP) and selective laser sintering (SLS) produce porous bodies that must be densified for many applications. New homogenous infiltration techniques can produce dense, homogenous parts of selected standard alloys, but the increased infiltration temperature dramatically increases creep deflection under self-weight. This paper reports on a method that improves dimensional stability by reducing creep deflection rates at high temperature. This method is applicable to all metal skeletons that must be strengthened without increasing shrinkage. In this method, the skeletons are reinforced by the addition of nanometer-sized particles dispersed in a liquid. The liquid is applied to the structure either during 3DP printing or after forming (3DP, SLS, pressing). The liquid is then evaporated, depositing the metal in the skeleton. The metal nanoparticles are sintered to density below the sintering temperature of the micron-scale skeleton particles. This concept is demonstrated using a suspension of 8–10 nm iron particles infiltrated into lightly sintered porous steel skeletons. When heated with an unsupported overhang to a typical infiltration temperature, creep deflection was reduced 50–80% with 0.5–1 wt% added metal.


Author(s):  
Szymon Mania ◽  
Adrianna Banach ◽  
Robert Tylingo

Three-dimensional (3D) biomaterial manufacturing strategies show an extraordinary driving force for the development of innovative solutions in the biomedical sector, including drug delivery systems, disease modelling and tissue and organ engineering. Due to its remarkable and promising biological and structural properties, chitosan has been widely studied for decades in several potential applications in the biomedical field. However, tools in the form of 3D printers have created new possibilities for the production of chitosan models, implants and scaffolds for cell cultures that are much more precise than existing ones. The article presents current achievements related to the possibility of using chitosan to create new materials for 3D printing in the form of chitosan bioinks, filaments, resins and powders dedicated for bioprinting, fused deposition modelling, stereolithography/digital light processing and selective laser sintering methods, respectively


Sign in / Sign up

Export Citation Format

Share Document