Shake table testing of perforated steel plate shear wall having light gauge bolted infill panels

2022 ◽  
Vol 188 ◽  
pp. 107030
Author(s):  
Daniel M. Dowden ◽  
Michel Bruneau
1999 ◽  
Vol 26 (5) ◽  
pp. 549-563 ◽  
Author(s):  
A Schumacher ◽  
G Y Grondin ◽  
G L Kulak

The behaviour under cyclic loading of unstiffened steel plate shear wall panels at their connection to the bounding beams and columns was investigated on full-size panel corner details. Four different infill panel connection details were tested to examine and compare their response to quasi-static cyclic loading. The load versus displacement response of the details showed gradual and stable deterioration at higher loads. The formation of tears in the connection details did not result in a loss of load-carrying capacity. In addition to the experimental program, a finite element model was developed to model the behaviour of one of the infill plate corner connection specimens. Results from the analysis showed that the finite element method can be used to obtain the load versus displacement behaviour of an infill panel-to-boundary member arrangement.Key words: cyclic loading, hysteresis, shear wall, steel, welded connection.


2010 ◽  
Vol 163-167 ◽  
pp. 205-210
Author(s):  
Hong Chao Guo ◽  
Ji Ping Hao ◽  
Feng Li

Based on the experiment of a one-third scale, single-span, two-storey semi-rigid composite steel frame model with cross-stiffened steel plate shear wall under lateral cyclic loadings, the interactive effect between the joint stiffness and the cross-stiffened steel plate shear wall, the failure mode and energy dissipation mechanism of the structure system were analyzed, some important parameters were obtained in regard to load-carrying capacity, ductility, stiffness and energy dissipation capacity. The results showed that the specimen exhibited excellent ductility, energy dissipation capacity and great safety margin; the stiffness degradation of the joints was not serious, the requirement of ductility was lowered by setting up infill panels, the cooperative work between the frame and the steel plate shear wall was well; stiffeners improved the force condition of steel panels, increased the stiffness and load-carrying capacity of panels, lightened the pinch of hysteretic loops and reduced the noise and tremor of panels. The failure mode of the structure induced by buckling of stiffeners, local buckling and interactive buckling of infill panels,plastic hinges were formed at the bottom of column and semi-rigid connection, the in-plane deformation of specimen was bending failure. The research provides a basis for engineering application and theoretical analysis of the structural system.


Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 2028-2043
Author(s):  
Can Mei ◽  
Yongshan Zhang ◽  
Dayang Wang ◽  
Chengqing Wu ◽  
Yizhe Xu

2015 ◽  
Vol 18 (6) ◽  
pp. 853-872 ◽  
Author(s):  
M. Gholipour ◽  
E. Asadi ◽  
M.M. Alinia

Author(s):  
Prashant Sunagar ◽  
Manish S Dharek ◽  
K Nruthya ◽  
K S Sreekeshava ◽  
B Nagashree ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document