Hysteretic Behavior of Semi-Rigid Composite Steel Frame with Cross-Stiffened Steel Plate Shear Walls

2010 ◽  
Vol 163-167 ◽  
pp. 205-210
Author(s):  
Hong Chao Guo ◽  
Ji Ping Hao ◽  
Feng Li

Based on the experiment of a one-third scale, single-span, two-storey semi-rigid composite steel frame model with cross-stiffened steel plate shear wall under lateral cyclic loadings, the interactive effect between the joint stiffness and the cross-stiffened steel plate shear wall, the failure mode and energy dissipation mechanism of the structure system were analyzed, some important parameters were obtained in regard to load-carrying capacity, ductility, stiffness and energy dissipation capacity. The results showed that the specimen exhibited excellent ductility, energy dissipation capacity and great safety margin; the stiffness degradation of the joints was not serious, the requirement of ductility was lowered by setting up infill panels, the cooperative work between the frame and the steel plate shear wall was well; stiffeners improved the force condition of steel panels, increased the stiffness and load-carrying capacity of panels, lightened the pinch of hysteretic loops and reduced the noise and tremor of panels. The failure mode of the structure induced by buckling of stiffeners, local buckling and interactive buckling of infill panels,plastic hinges were formed at the bottom of column and semi-rigid connection, the in-plane deformation of specimen was bending failure. The research provides a basis for engineering application and theoretical analysis of the structural system.

2021 ◽  
Author(s):  
Osman Shallan ◽  
Hassan M. Maaly ◽  
Mohammed M. Elgiar ◽  
Alaa El-Din Elsisi

Abstract Currently, the steel plate shear wall (SPSW) is commonly used in high-rise steel buildings as a lateral load resisting system. The SPSW consists of the boundary frame and infill plate. The objectives of this work are to study the effect of same weight different infill plate types, the effect of boundary frame characteristics, and the effect of infill plate weld separation on the seismic behavior of the SPSWs. A numerical method was proposed to have a comprehensive comparison of seismic behaviors of different types of SPSWs, having the same weight. The model was validated by using previously published numerical and experimental works. The study covers unstiffened (USPSW), stiffened (SSPSW), and corrugated steel plate shear wall (CSPSW). Similarly, the effect of boundary frame stiffness and welding separation characteristics between the plate and boundary frame will be studied, and key issues, such as load-carrying capacity, stiffness, and energy-dissipation capacity were discussed deeply. It was found that the SSPSW has better seismic behavior than USPSW and CSPSW. SSPSW has a higher load-carrying capacity than USPSW, and CSPSW by about 14, 24%, respectively. USPSW is more sensitive to the stiffness of the boundary frame than CSPSW. The plate welding separation has a greater impact on the initial stiffness than load-carrying capacity. When plate-column welding separation occurs, the initial stiffness, and the energy dissipation capacity reduces by about 21%, and 14%. Whereas, when the plate-beam separation occurs, the initial stiffness and energy dissipation capacity reduce by about 36%, and 20.5%.


2019 ◽  
Vol 803 ◽  
pp. 314-321 ◽  
Author(s):  
Maryam Bypour ◽  
Benyamin Kioumarsi ◽  
Mahdi Kioumarsi

In this paper, the behavior of steel plate shear wall (SPSW) in the reinforced concrete frame (RCF) has been studied numerically. Three different connections have been proposed to connect SPSW to RCF. In the first connection, fish plates, while in the second one, combination of fish plates and studs transfer forces between SPSW and RCF. In the third connection, there is no direct connection between the infill plate and RCF, and additional steel frame has been used for connecting of the infill plate. The results demonstrate that, load carrying capacity increases in all the specimens comparing the reference RCF. Investigating the formation sequence of plastic hinges in different specimens demonstrates that there is different sequence in the specimens with different connections.


2021 ◽  
Vol 7 (4) ◽  
pp. 633-648
Author(s):  
Ali Joharchi ◽  
Siti Aminah Osman ◽  
Mohd Yazmil Md Yatim ◽  
Mohammad Ansari

Corrugated Steel Shear Wall (CSSW) is an efficient shear wall system, which has higher energy dissipation capacity, ductility and stiffness when compared to the Steel Plate Shear Wall (SPSW) with flat infill plate. Despite of these advantages, the ultimate load of CSSW is lower than that of SPSW. Various studies conducted to improve the cyclic behavior of CSSW revealed that increasing corrugation angle might enhance energy dissipation capacity and toughness of CSSWs. However, the ultimate load of CSSW was not improved by increasing the corrugation angle. Thus, the current study proposed new corrugated infill panel schemes to improve the ultimate load of CSSWs. To this end, Finite Element (FE) models were established using ABAQUS/Standard and verified with the experimental results from previous researches. The corrugation angle of the proposed plates was found based on a numerical investigation on seven CSSW FE models with the corrugation angle ranges from 30° to 120°. The FE results revealed that the model with the corrugation angle of 120 achieved highest ultimate load, energy dissipation capacity and toughness amongst the CSSW models. In addition, the ultimate loads, energy dissipation capacities and toughness of the proposed infill plates were up to 11.8%, 53.9% and 8.8% respectively higher than those of CSSW model with the corrugation angle of 120°. Furthermore, the proposed infill plates use up to 13.4% lower amount of steel compared to the corrugated plate with the corrugation angle of 120. Doi: 10.28991/cej-2021-03091678 Full Text: PDF


2012 ◽  
Vol 446-449 ◽  
pp. 1006-1013 ◽  
Author(s):  
Wan Lin Cao ◽  
Hong Ying Dong ◽  
Jian Wei Zhang

RC shear wall with STRC (steel tube-reinforced concrete) columns and embedded steel plate has been proposed and used in the project of an International Conference Center. In order to ascertain the seismic performance of this kind of composite shear walls with different openings in the practical engineering, four 1/7 scale specimens with shear span ration 2.0 were tested under low-frequency cyclic loading. The load-carrying capacity, ductility, stiffness and its attenuation, hysteretic property, energy dissipation capacity and failure mode of the specimens were analyzed. The effect of the embedded steel plate and the concealed steel trusses on the seismic performance of the walls was studied. The results show that the ductility and load-carrying capacity of RC shear wall are improved greatly by setting the embedded steel plate or concealed steel trusses in the wall; The embedded steel plate and the concrete work very well through the stud connectors welded on the steel plate and the tie bars inserted in the walls; The STRC columns have the advantage of higher load-carrying capacity, not easy to crack and better ductility; The new composite shear wall has good seismic performance and important practical value. It is suitable for large and complex application of high-rise buildings in the seismic regions.


2013 ◽  
Vol 438-439 ◽  
pp. 1529-1532
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Concrete filled steel tube (CFST) got a good application in actual project. In order to further the seismic performance of the CFST, experiment was carried on two 1/5 scale models, which included one CFST frame, one CFST truss. Based on the experimental study, load-carrying capacity, stiffness, ductility, hysteretic property, energy dissipation and failure phenomena of each model were analyzed. The study shows that the seismic performance of CFST truss has high bearing capacity, stiffness, energy dissipation capacity and good ductility.


2020 ◽  
Vol 14 (54) ◽  
pp. 104-115
Author(s):  
Osman Shallan ◽  
Hassan Maaly ◽  
Mohammed Elgiar ◽  
Alaaeldin Elsisi

The steel plate shear walls (SPSW) are currently being considered as a lateral load resisting system. A numerical method was proposed to have a comprehensive comparison of seismic behaviors of the plane wall (PW) and stiffened plane wall (SPW) with different stiffener characteristics, having the same weight, by using finite element modeling (FEM). The model was validated by using previously published experimental works. The material and geometric nonlinearity were taken into consideration. In this paper, the effect of using stiffeners with different cross-section shapes and directions will be studied, and key issues, such as load-carrying capacity, stiffness, and energy dissipation capacity, were discussed in depth. It was found that the proposed SPW with horizontal L, T, and U stiffeners could effectively improve load-carrying capacity by about 4, 20, and 23%, respectively. Diagonally and horizontally, SPWs with U stiffeners have higher energy-dissipation capacity than PW by about 57, 50%, respectively. This method provides a combination of high-performance stiffeners form and material for improving the seismic behavior of SPW.


2021 ◽  
Vol 11 (7) ◽  
pp. 3275
Author(s):  
Majid Yaseri Gilvaee ◽  
Massood Mofid

This paper investigates the influence of an opening in the infill steel plate on the behavior of steel trapezoidal corrugated infill panels. Two specimens of steel trapezoidal corrugated shear walls were constructed and tested under cyclic loading. One specimen had a single rectangular opening, while the other one had two rectangular openings. In addition, the percentage of opening in both specimens was 18%. The initial stiffness, ultimate strength, ductility ratio and energy dissipation capacity of the two tested specimens are compared to a specimen without opening. The experimental results indicate that the existence of an opening has the greatest effect on the initial stiffness of the corrugated steel infill panels. In addition, the experimental results reveal that the structural performance of the specimen with two openings is improved in some areas compared to the specimen with one opening. To that end, the energy dissipation capacity of the specimen with two openings is obtained larger than the specimen with one opening. Furthermore, a number of numerical analyses were performed. The numerical results show that with increasing the thickness of the infill plate or using stiffeners around the opening, the ultimate strength of a corrugated steel infill panel with an opening can be equal to or even more than the ultimate strength of that panel without an opening.


2021 ◽  
pp. 136943322110542
Author(s):  
Mahdi Usefvand ◽  
Ahmad Maleki ◽  
Babak Alinejad

Coupled steel plate shear wall (C-SPSW) is one of the resisting systems with high ductility and energy absorption capacity. Energy dissipation in the C-SPSW system is accomplished by the bending and shear behavior of the link beams and SPSW. Energy dissipation and floor displacement control occur through link beams at low seismic levels, easily replaced after an earthquake. In this study, an innovative coupled steel plate shear wall with a yielding FUSE is presented. The system uses a high-ductility FUSE pin element instead of a link beam, which has good replaceability after the earthquake. In this study, four models of coupled steel plate shear walls were investigated with I-shaped link beam, I-shaped link beam with reduced beam section (RBS), box-link beam with RBS, and FUSE pin element under cyclic loading. The finite element method was used through ABAQUS software to develop the C-SPSW models. Two test specimens of coupled steel plate shear walls were validated to verify the finite element method results. Comparative results of the hysteresis curves obtained from the finite element analysis with the experimental curves indicated that the finite element model offered a good prediction of the hysteresis behavior of C-SPSW. It is demonstrated in this study that the FUSE pin can improve and increase the strength and energy dissipation of a C-SPSW system by 19% and 20%, respectively.


Sign in / Sign up

Export Citation Format

Share Document