Caspase-6 knock-out using CRISPR/Cas9 improves cognitive behavior in the 3xTg mouse model of Alzheimer's disease

Cytotherapy ◽  
2018 ◽  
Vol 20 (5) ◽  
pp. S94-S95 ◽  
Author(s):  
D. Offen ◽  
A. Angel ◽  
T. Ben-Zur
2020 ◽  
Vol 21 (3) ◽  
pp. 1144
Author(s):  
Ariel Angel ◽  
Rotem Volkman ◽  
Tabitha Grace Royal ◽  
Daniel Offen

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-β plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.


Sign in / Sign up

Export Citation Format

Share Document