caspase 6
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 56)

H-INDEX

43
(FIVE YEARS 5)

Author(s):  
Evelina Valionyte ◽  
Yi Yang ◽  
Sophie A. Griffiths ◽  
Amelia T. Bone ◽  
Elizabeth R. Barrow ◽  
...  

AbstractSQSTM1/p62, as a major autophagy receptor, forms droplets that are critical for cargo recognition, nucleation, and clearance. p62 droplets also function as liquid assembly platforms to allow the formation of autophagosomes at their surfaces. It is unknown how p62-droplet formation is regulated under physiological or pathological conditions. Here, we report that p62-droplet formation is selectively blocked by inflammatory toxicity, which induces cleavage of p62 by caspase-6 at a novel cleavage site D256, a conserved site across human, mouse, rat, and zebrafish. The N-terminal cleavage product is relatively stable, whereas the C-terminal product appears undetectable. Using a variety of cellular models, we show that the p62 N-terminal caspase-6 cleavage product (p62-N) plays a dominant-negative role to block p62-droplet formation. In vitro p62 phase separation assays confirm this observation. Dominant-negative regulation of p62-droplet formation by caspase-6 cleavage attenuates p62 droplets dependent autophagosome formation. Our study suggests a novel pathway to modulate autophagy through the caspase-6–p62 axis under certain stress stimuli.


2021 ◽  
Vol 14 (12) ◽  
pp. 1249
Author(s):  
Shuheng Huang ◽  
Hu Mei ◽  
Laichun Lu ◽  
Minyao Qiu ◽  
Xiaoqi Liang ◽  
...  

Due to their potential in the treatment of neurodegenerative diseases, caspase-6 inhibitors have attracted widespread attention. However, the existing caspase-6 inhibitors showed more or less inevitable deficiencies that restrict their clinical development and applications. Therefore, there is an urgent need to develop novel caspase-6 candidate inhibitors. Herein, a gated recurrent unit (GRU)-based recurrent neural network (RNN) combined with transfer learning was used to build a molecular generative model of caspase-6 inhibitors. The results showed that the GRU-based RNN model can accurately learn the SMILES grammars of about 2.4 million chemical molecules including ionic and isomeric compounds and can generate potential caspase-6 inhibitors after transfer learning of the known 433 caspase-6 inhibitors. Based on the novel molecules derived from the molecular generative model, an optimal logistic regression model and Surflex-dock were employed for predicting and ranking the inhibitory activities. According to the prediction results, three potential caspase-6 inhibitors with different scaffolds were selected as the promising candidates for further research. In general, this paper provides an efficient combinational strategy for de novo molecular design of caspase-6 inhibitors.


2021 ◽  
pp. 101379
Author(s):  
Min Zheng ◽  
Rajendra Karki ◽  
Balabhaskararao Kancharana ◽  
Hartmut Berns ◽  
Shondra M. Pruett-Miller ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Libin Zhou ◽  
Kwangsik Nho ◽  
Maria G. Haddad ◽  
Nicole Cherepacha ◽  
Agne Tubeleviciute-Aydin ◽  
...  

AbstractCaspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation. Compared to wild type Casp6 (Casp6WT), recombinant Casp6N73T altered Casp6 proteolysis of natural substrates Lamin A/C and α-Tubulin, but did not alter cleavage of the Ac-VEID-AFC Casp6 peptide substrate. Casp6N73T-transfected HEK293T cells showed elevated Casp6 mRNA levels similar to Casp6WT-transfected cells, but, in contrast to Casp6WT, did not accumulate active Casp6 subunits nor show increased Casp6 enzymatic activity. Electrophysiological and morphological assessments showed that Casp6N73T recombinant protein caused less neurofunctional damage and neurodegeneration in hippocampal CA1 pyramidal neurons than Casp6WT. Lastly, CASP6 mRNA levels were increased in several AD brain regions confirming the implication of Casp6 in AD. These studies suggest that the rare Casp6N73T variant may protect against hippocampal atrophy due to its altered catalysis of natural protein substrates and intracellular instability thus leading to less Casp6-mediated damage to neuronal structure and function.


2021 ◽  
Author(s):  
Abdullah Aslan ◽  
Muhammed Ismail Can ◽  
Ozlem Gok ◽  
Seda Beyaz ◽  
Gozde Parlak ◽  
...  

Abstract In this study, 42 Wistar albino female rats (n = 42, 8 weeks old) were used. Rats were divided into 6 groups and 7 rats included each group. Groups: (i) Control Group: Standard diet; (ii) RJ (royal jelly) Group: Standard diet + royal jelly; (iii) F50 Group: Standard diet + 50 mg/kg fluoride; (iv): F100 Group: Standard diet + 100 mg/kg fluoride; (v) F50 + RJ Group: Standard diet + 50 mg/kg fluoride + royal jelly; (iv): F100 + RJ Group: Standard diet + 100 mg/kg fluoride + royal jelly. After the 8-week study period, the rats were decapitated and their muscle tissues were removed. Expression levels of Caspase-3, Caspase-6, Bax, Tnf-α, IL1-α and Bcl-2 proteins in muscle tissue were determined by Western Blotting method. Histopathological analyzes were also performed on the muscle tissue. MDA, GSH, and CAT analyzes were determined by spectrophotometric analysis. According to our findings, Bcl-2, Tnf-α and IL1-α protein expression were increased in damage groups compared to control and royal jelly groups, Caspase-3, Caspase-6 and Bax protein expression levels decreased in damage groups. There was an increase in MDA level in damage groups compared to the control and royal jelly groups, CAT and GSH levels decreased in damage groups. According to histopathological analysis results, edema and inflammatory cell formations were found in the injury groups, a tendency to decrease in these injuries was observed in the treatment groups. Based on these results, we can say that royal jelly has protective effects against fluoride damage.


2021 ◽  
Author(s):  
Panos Theofilas ◽  
Chao Wang ◽  
David Butler ◽  
Dulce O. Morales ◽  
Cathrine Petersen ◽  
...  

Abstract Background: Tau post-translational modifications (PTMs) are associated with progressive tau accumulation and neuronal loss in tauopathies, including forms of frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD). Tau proteolysis by caspases, including caspase-6, represents an understudied PTM that may increase neurotoxicity and tau self-aggregation. Methods: To elucidate the presence and temporal course of caspase activation, tau cleavage, and neuronal death, we generated two novel epitope (neoepitope) monoclonal antibodies (mAbs) against caspase-6 tau proteolytic sites. We evaluated tau cleavage and response to apoptotic stress in cortical neurons derived from induced pluripotent stem cells (iPSCs) with frontotemporal dementia (FTD)-causing V337M MAPT mutation. We tested the neuroprotective effect of caspase inhibitors in the induced neurons. We also demonstrated the presence of the tau neoepitopes in postmortem brains from an individual with FTD (V337M MAPT) and an individual with AD, compared to a healthy control.Results: FTLD V337M MAPT and AD postmortem brains showed positivity for both cleaved tau mAbs and active caspase-6. Relative to isogenic wild-type MAPT controls, V337M MAPT neurons cultured for 3 months showed a time-dependent increase in pathogenic tau in the form of caspase-cleaved tau and phosphorylated (p)-tau, and higher levels of tau oligomers. Accumulation of toxic tau species in V337M MAPT neurons was correlated with increased vulnerability to pro-apoptotic stress. Notably, this mutation-associated cell death was pharmacologically rescued by inhibition of effector caspases.Conclusions: Culturing iPSC-derived neurons for three months exposes age-related tau pathologies, including caspase-mediated cleavage, that are also observed in human postmortem brains with abnormal tau deposition. Neoepitope antibodies to caspase-cleaved tau may serve as biomarkers of tau pathology. Furthermore, caspases could be viable therapeutic targets for tau pathogenesis in FTLD and other tauopathies.


Sign in / Sign up

Export Citation Format

Share Document