Transient ectopic expression of CXCR4 and IL10 enhances in vivo anti-inflammatory potential of human mesenchymal stromal cells

Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S60
Author(s):  
M. Hervas-Salcedo ◽  
M. Fernandez-Garcia ◽  
M. Hernando-Rodriguez ◽  
Ó. Quintana ◽  
J. Segovia ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rosario Hervás-Salcedo ◽  
María Fernández-García ◽  
Miriam Hernando-Rodríguez ◽  
Oscar Quintana-Bustamante ◽  
Jose-Carlos Segovia ◽  
...  

Abstract Background Mesenchymal stromal cells (MSCs) constitute one of the cell types most frequently used in cell therapy. Although several studies have shown the efficacy of these cells to modulate inflammation in different animal models, the results obtained in human clinical trials have been more modest. Here, we aimed at improving the therapeutic properties of MSCs by inducing a transient expression of two molecules that could enhance two different properties of these cells. With the purpose of improving MSC migration towards inflamed sites, we induced a transient expression of the C-X-C chemokine receptor type 4 (CXCR4). Additionally, to augment the anti-inflammatory properties of MSCs, a transient expression of the anti-inflammatory cytokine, interleukin 10 (IL10), was also induced. Methods Human adipose tissue-derived MSCs were transfected with messenger RNAs carrying the codon-optimized versions of CXCR4 and/or IL10. mRNA-transfected MSCs were then studied, first to evaluate whether the characteristic phenotype of MSCs was modified. Additionally, in vitro and also in vivo studies in an LPS-induced inflamed pad model were conducted to evaluate the impact associated to the transient expression of CXCR4 and/or IL10 in MSCs. Results Transfection of MSCs with CXCR4 and/or IL10 mRNAs induced a transient expression of these molecules without modifying the characteristic phenotype of MSCs. In vitro studies then revealed that the ectopic expression of CXCR4 significantly enhanced the migration of MSCs towards SDF-1, while an increased immunosuppression was associated with the ectopic expression of IL10. Finally, in vivo experiments showed that the co-expression of CXCR4 and IL10 increased the homing of MSCs into inflamed pads and induced an enhanced anti-inflammatory effect, compared to wild-type MSCs. Conclusions Our results demonstrate that the transient co-expression of CXCR4 and IL10 enhances the therapeutic potential of MSCs in a local inflammation mouse model, suggesting that these mRNA-modified cells may constitute a new step in the development of more efficient cell therapies for the treatment of inflammatory diseases.


Cytotherapy ◽  
2018 ◽  
Vol 20 (5) ◽  
pp. S36 ◽  
Author(s):  
N. Enukashvily ◽  
K. Levchuk ◽  
V.V. Bagaeva ◽  
D.S. Bogolyubov ◽  
I. Bogolyubova ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 462 ◽  
Author(s):  
Luis A. Rodriguez ◽  
Arezoo Mohammadipoor ◽  
Lucero Alvarado ◽  
Robin M. Kamucheka ◽  
Amber M. Asher ◽  
...  

Multipotent mesenchymal stromal cells (MSCs) have emerged as potent therapeutic agents for multiple indications. However, recent evidence indicates that MSC function is compromised in the physiological post-injury milieu. In this study, bone marrow (BM)- and adipose-derived (AD)-MSCs were preconditioned in hypoxia with or without inflammatory mediators to potentiate their immunotherapeutic function in preparation for in vivo delivery. Human MSCs were cultured for 48 h in either normoxia (21% O2) or hypoxia (2% O2) with or without the addition of Cytomix, thus creating 4 groups: (1) normoxia (21%); (2) Cytomix-normoxia (+21%); (3) hypoxia (2%); and (4) Cytomix-hypoxia (+2%). The 4 MSC groups were subjected to comprehensive evaluation of their characteristics and function. Preconditioning did not alter common MSC surface markers; nonetheless, Cytomix treatment triggered an increase in tissue factor (TF) expression. Moreover, the BM-MSCs and AD-MSCs from the +2% group were not able to differentiate to chondrocytes and osteoblasts, respectively. Following Cytomix preconditioning, the metabolism of MSCs was significantly increased while viability was decreased in AD-MSCs, but not in BM-MSCs. MSCs from both tissues showed a significant upregulation of key anti-inflammatory genes, increased secretion of IL-1 receptor antagonist (RA), and enhanced suppression of T-cell proliferation following the Cytomix treatment. Similarly, following a lipopolysaccharide challenge, the Cytomix-treated MSCs suppressed TNF-α secretion, while promoting the production of IL-10 and IL-1RA. These preconditioning approaches facilitate the production of MSCs with robust anti-inflammatory properties. AD-MSCs preconditioned with Cytomix under normoxia appear to be the most promising therapeutic candidates; however, safety concerns, such as thrombogenic disposition of cells due to TF expression, should be carefully considered prior to clinical translation.


2014 ◽  
Vol 3 (1) ◽  
pp. 60-72 ◽  
Author(s):  
Raghavan Chinnadurai ◽  
Marco A. Garcia ◽  
Yumiko Sakurai ◽  
Wilbur A. Lam ◽  
Allan D. Kirk ◽  
...  

Cytotherapy ◽  
2010 ◽  
Vol 12 (5) ◽  
pp. 615-625 ◽  
Author(s):  
Shannon Kidd ◽  
Lisa Caldwell ◽  
Martin Dietrich ◽  
Ismael Samudio ◽  
Erika L Spaeth ◽  
...  

2012 ◽  
Vol 18 (5-6) ◽  
pp. 558-567 ◽  
Author(s):  
Joyce Doorn ◽  
Ramakrishnaiah Siddappa ◽  
Clemens A. van Blitterswijk ◽  
Jan de Boer

2014 ◽  
Vol 115 (9) ◽  
pp. 1561-1571 ◽  
Author(s):  
Ute Hempel ◽  
Claudia Matthäus ◽  
Carolin Preissler ◽  
Stephanie Möller ◽  
Vera Hintze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document