scholarly journals Human Mesenchymal Stromal Cells (MSCs) Reduce Neointimal Hyperplasia in a Mouse Model of Flow-Restriction by Transient Suppression of Anti-Inflammatory Cytokines

2011 ◽  
Vol 18 (6) ◽  
pp. 464-474 ◽  
Author(s):  
Makoto Shoji ◽  
Adam Oskowitz ◽  
Christopher D Malone ◽  
Darwin J Prockop ◽  
Radhika Pochampally
Cytotherapy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. S60
Author(s):  
M. Hervas-Salcedo ◽  
M. Fernandez-Garcia ◽  
M. Hernando-Rodriguez ◽  
Ó. Quintana ◽  
J. Segovia ◽  
...  

2014 ◽  
Vol 115 (9) ◽  
pp. 1561-1571 ◽  
Author(s):  
Ute Hempel ◽  
Claudia Matthäus ◽  
Carolin Preissler ◽  
Stephanie Möller ◽  
Vera Hintze ◽  
...  

2018 ◽  
Vol 90 (2) ◽  
pp. 47-52 ◽  
Author(s):  
O V Knyazev ◽  
A V Kagramanova ◽  
N A Fadeeva ◽  
A A Lishchinskaya ◽  
O N Boldyreva ◽  
...  

Crohn's disease (CD) is a chronic, recurring disease of the gastrointestinal tract of unclear etiology. One of the new approaches to CD therapy is the use of the possibilities of stem cells, in particular, mesenchymal stromal cells (MSCs). Currently, the use of MSC in clinical practice for the treatment of chronic inflammatory and autoimmune diseases is being studied in patients who receive concomitant therapy with other immunomodulatory medications. Aim. To evaluate the effectiveness of MSCs therapy in patients with CD receiving azathioprine (AZA). Materials and methods. The study included 34 patients with inflammatory (luminal) form of CD. The 1st group of patients (n=15) received anti-inflammatory therapy using MSCs culture in combination with AZA. The 2nd group (n=19) received MSCs without AZA. The severity of the attack was assessed in points in accordance with the of Crohn's disease activity index (CDAI). Immunoglobulins (IgA, IgG, IgM), interleukins (IL) 1β, 4, 10, tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), transforming growth factor-1β (TGF-1β), C-reactive protein (CRP), platelets and erythrocyte sedimentation rate (ESR) at 2, 6 and 12 months from the beginning of MSCs therapy. Results. The initial mean CDAI in the 1st group was 337.6±17.1 points, in the 2nd group - 332.7±11.0 points (p=0.3). In both groups of patients there was a significant decrease in CDAI after 2 months. From the beginning of therapy MSCs: in the 1st group to 118.9±12.4 points, in the 2nd - 120.3±14.1 points (p=0.7), after 6 months - 110.3±11.1 and 114.3±11.8 points (p=0.8), respectively. After 12 months CDAI in the 1st group was 99.9±10.8 points, in the 2nd group it was 100.6±12.1 points (p=0.8). The level of IgA, IgG, IgM was significantly lower in the group of patients with a longer history of the disease and long-term ASA. After the introduction of MSC in both groups of patients with BC, there was a tendency for the growth of pro - and anti-inflammatory cytokines, with a significantly lower level of pro-inflammatory cytokines - INF-γ, TNF-α, IL-1β - in the 1st group, indicating potentiation of the immunosuppressive effect of MSCs and AZA, which provides a more pronounced anti-inflammatory effect. Conclusion. Transplantation of MSCs promotes an increase in the serum of patients with CD initially reduced concentration of IG, cytokines and restoring their balance as the onset of clinical remission. The combination with AZA has a more pronounced anti-inflammatory effect.


2016 ◽  
Vol 4 (3) ◽  
pp. 327-337 ◽  
Author(s):  
Siv H. Moen ◽  
Marita Westhrin ◽  
Muhammad Zahoor ◽  
Nikolai N. Nørgaard ◽  
Hanne Hella ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Weichao Zhai ◽  
Jerome Tan ◽  
Tobias Russell ◽  
Sixun Chen ◽  
Dennis McGonagle ◽  
...  

AbstractHuman mesenchymal stromal cells (hMSCs) have demonstrated, in various preclinical settings, consistent ability in promoting tissue healing and improving outcomes in animal disease models. However, translation from the preclinical model into clinical practice has proven to be considerably more difficult. One key challenge being the inability to perform in situ assessment of the hMSCs in continuous culture, where the accumulation of the senescent cells impairs the culture’s viability, differentiation potential and ultimately leads to reduced therapeutic efficacies. Histochemical $$\upbeta $$ β -galactosidase staining is the current standard for measuring hMSC senescence, but this method is destructive and not label-free. In this study, we have investigated alternatives in quantification of hMSCs senescence, which included flow cytometry methods that are based on a combination of cell size measurements and fluorescence detection of SA-$$\upbeta $$ β -galactosidase activity using the fluorogenic substrate, C$${_{12}}$$ 12 FDG; and autofluorescence methods that measure fluorescence output from endogenous fluorophores including lipopigments. For identification of senescent cells in the hMSC batches produced, the non-destructive and label-free methods could be a better way forward as they involve minimum manipulations of the cells of interest, increasing the final output of the therapeutic-grade hMSC cultures. In this work, we have grown hMSC cultures over a period of 7 months and compared early and senescent hMSC passages using the advanced flow cytometry and autofluorescence methods, which were benchmarked with the current standard in $$\upbeta $$ β -galactosidase staining. Both the advanced methods demonstrated statistically significant values, (r = 0.76, p $$\le $$ ≤ 0.001 for the fluorogenic C$${_{12}}$$ 12 FDG method, and r = 0.72, p $$\le $$ ≤ 0.05 for the forward scatter method), and good fold difference ranges (1.120–4.436 for total autofluorescence mean and 1.082–6.362 for lipopigment autofluorescence mean) between early and senescent passage hMSCs. Our autofluroescence imaging and spectra decomposition platform offers additional benefit in label-free characterisation of senescent hMSC cells and could be further developed for adoption for future in situ cellular senescence evaluation by the cell manufacturers.


Sign in / Sign up

Export Citation Format

Share Document