cytoskeletal disruption
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 6)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Amaro Saco ◽  
Antonella Panebianco ◽  
Sofía Blanco ◽  
Beatriz Novoa ◽  
Angel P. Diz ◽  
...  

In recent years, the immune response of mussels (Mytilus galloprovincialis) has been studied at the transcriptomic level against several bacterial infections. As a result, different immune mechanisms have been revealed, including both conserved essential innate pathways and particularities of the mussel immune response according to its nature and environment. However, there is often a lack of functional verification because mussels are a non-model species and because transcriptomic and proteomic information is not always well correlated. In the current study, a high-throughput quantitative proteomics study coupled to LC-MS/MS analysis using isobaric tandem mass tags (TMTs) for protein labeling was employed to study the mussel gill immune response to a Vibrio splendidus bath (waterborne) infection at a functional protein level. A total of 4,242 proteins were identified and quantified, of which 226 were differentially expressed (DEPs) after infection, giving to the study a depth that was lacking in previous proteomic studies of the bivalve immune response. Modulated proteins evidenced an important cytoskeletal disruption caused by bacterial infection. A conserved network of associated proteins was modulated, regulating oxidative stress and NF-kB inflammatory responses and leading to innate immunity effectors. Proteomic results were submitted to an integrated analysis with those obtained in a previous transcriptomic approach with the same infection. Half of all the quantified proteins had a concordant transcriptomic expression trend, but this concordance increased when focusing on the DEPs. The correlation was higher within the immune-related DEPs, and the activation of the conserved NF-kB pro-inflammatory pathway was the main response in both approaches. The results of both techniques could be integrated to obtain a more complete vision of the response.


Reproduction ◽  
2020 ◽  
Vol 160 (4) ◽  
pp. 533-546
Author(s):  
Sadaf N Kalam ◽  
Louise Cole ◽  
Laura Lindsay ◽  
Christopher R Murphy

Luminal uterine epithelial cells (UEC) have a surge in vesicular activity during early uterine receptivity. It has been predicted these vesicles exit the UEC via exocytosis resulting in secretion and membrane trafficking. The present study investigated the changes in SNARE proteins VAMP2 (v-SNARE) and syntaxin 3 (t-SNARE) localisation and abundance in UECs during early pregnancy in the rat. We found VAMP2 and syntaxin 3 are significantly higher on day 5.5 compared to day 1 of pregnancy. On day 5.5, VAMP2 is perinuclear and syntaxin 3 is concentrated in the apical cytoplasm compared to a cytoplasmic localisation on day 1. This change in localisation and abundance show VAMP2 and syntaxin 3 are involved in vesicular movement and membrane trafficking in UECs during early pregnancy. This study also investigated the influence of cytoskeletal disruption of microtubules and actin filaments on VAMP2 and syntaxin 3 in UECs grown in vitro, since microtubules and actin influence vesicle trafficking. As expected, this study found disruption to microtubules with colchicine and actin with cytochalasin D impacted VAMP2 and syntaxin 3 localisation. These results suggest VAMP2 and syntaxin 3 are involved in the timely trafficking of vesicular membranes to the apical surface in UECs during early pregnancy, as are of microtubules and actin.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1132 ◽  
Author(s):  
Philip M. Graybill ◽  
Rafael V. Davalos

Pulsed electric fields (PEFs) have become clinically important through the success of Irreversible Electroporation (IRE), Electrochemotherapy (ECT), and nanosecond PEFs (nsPEFs) for the treatment of tumors. PEFs increase the permeability of cell membranes, a phenomenon known as electroporation. In addition to well-known membrane effects, PEFs can cause profound cytoskeletal disruption. In this review, we summarize the current understanding of cytoskeletal disruption after PEFs. Compiling available studies, we describe PEF-induced cytoskeletal disruption and possible mechanisms of disruption. Additionally, we consider how cytoskeletal alterations contribute to cell–cell and cell–substrate disruption. We conclude with a discussion of cytoskeletal disruption-induced anti-vascular effects of PEFs and consider how a better understanding of cytoskeletal disruption after PEFs may lead to more effective therapies.


2020 ◽  
Vol 57 (2) ◽  
pp. 344-348
Author(s):  
Amanda L. Johnson ◽  
Samuel M. Peterson ◽  
Margaret M. L. Terry ◽  
Betsy Ferguson ◽  
Lois M. Colgin ◽  
...  

Epidermolysis bullosa simplex (EBS) is an inherited skin disorder characterized by increased skin and mucous membrane fragility. Most cases are caused by mutations in keratin 5 ( KRT5) and keratin 14 ( KRT14). Mutations of these genes result in cytoskeletal disruption of the basal keratinocytes. Gross and histopathologic findings of 2 clinically affected homozygous rhesus macaques with an insertion variant mutation in KRT5 are described and compared with 6 deceased phenotypically normal animals that were heterozygous for the KRT5 insertion variant. Animals that were homozygous for the KRT5 insertion variant were stillborn and had widespread loss of the epidermis. Microscopic examination confirmed severe ulceration and basal cell vacuolation with basilar vesicle formation in the remaining intact epidermis. Immunohistochemistry for cytokeratin 5 demonstrated lack of epidermal immunoreactivity in homozygotes. DNA sequencing identified a 34–base pair insertion variant in exon 5 of the KRT5 gene. To our knowledge, this is the first report of epidermolysis bullosa in rhesus macaques.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Cezar Gavrilovici ◽  
Yulan Jiang ◽  
Ivana Kiroski ◽  
G Campbell Teskey ◽  
Jong M Rho ◽  
...  

Abstract Mutations in cytoskeletal proteins can cause early infantile and childhood epilepsies by misplacing newly born neurons and altering neuronal connectivity. In the adult epileptic brain, cytoskeletal disruption is often viewed as being secondary to aberrant neuronal activity and/or death, and hence simply represents an epiphenomenon. Here, we review the emerging evidence collected in animal models and human studies implicating the cytoskeleton as a potential causative factor in adult epileptogenesis. Based on the emerging evidence, we propose that cytoskeletal disruption may be an important pathogenic mechanism in the mature epileptic brain.


2019 ◽  
pp. 1033-1046
Author(s):  
Alan J. Hargreaves ◽  
Magdalini Sachana ◽  
John Flaskos

2018 ◽  
pp. 21-46
Author(s):  
Vivian Thaise da Silveira ◽  
Eduardo Candelario-Jalil ◽  
Antonio Carlos Pinheiro de Oliveira

This chapter presents an overview of the current literature on the pathophysiological mechanisms of inflammatory mediators in neuroimmune modulation, as well as pharmacological strategies in inflammatory signaling pathways in the central nervous system (CNS). Increasing attention has been paid to the importance of brain–immune interaction for the maintenance of brain homeostasis. If immune activation persists, inflammatory mediators and their signaling pathways can influence neurons/neuronal circuits, leading to mood, cognitive, and behavioral impairment. Therefore, immune dysregulation can play a role in the pathophysiology of psychiatric disorders through its direct and indirect ability to alter the synthesis, reuptake, and release of multiple neurotransmitters, and to induce oxidative stress, mitochondrial dysfunction, cytoskeletal disruption, and cytotoxic lipid peroxidation, among other effects. In this sense, inflammatory mediators and their signaling pathway are currently regarded as attractive targets for promising therapeutic and preventative therapeutic strategies in clinical psychiatry, especially for patients who are resistant to treatment and exhibit inflammatory phenotypes. The efficacy and precision of anti-inflammatory treatments can be further tuned, and they depend on the methodologically rigorous design of future clinical trials.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Alyssa M. Master ◽  
Philise N. Williams ◽  
Nikorn Pothayee ◽  
Nipon Pothayee ◽  
Rui Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document