scholarly journals In-vivo disintegration and absorption of two fast acting aspirin tablet formulations compared to ibuprofen tablets using pharmacoscintigraphy

2019 ◽  
Vol 51 ◽  
pp. 535-541 ◽  
Author(s):  
H. Stevens ◽  
M. Voelker ◽  
L. Gow ◽  
F. MacDougall ◽  
G. Bieri
Author(s):  
Adel M. Aly ◽  
Ahmed S. Ali

: Glipizide (GZ) is an oral blood-glucose-lowering drug of the sulfonylurea class characterized by its poor aqueous solubility. Aiming for the production of GZ tablets with rapid onset of action followed by prolonged effect; GZ-Polyethylene glycol (PEG 4000 and 6000) solid dispersions with different ratios, (using melting and solvent evaporation method), as well as, coprecipitate containing GZ with polymethyl-methacrylate (PMMA) were prepared. Four tablet formulations were prepared containing; a) GZ alone, b) GZ: PEG6000, 1:10, c) GZ:PMMA 1:3, and, d)both GZ:PEG6000 1:10 and GZ:PMMA 1:3. The solvent evaporation method showed more enhancement of GZ solubility than the melting one, and this solubilizing effect increased with PEG increment. Generally, PEG6000 showed more enhancement of dissolution than PEG4000 especially at 1:10 drug: polymer ratio (the most enhancing formula). Also, the prepared tablet formulations showed acceptable physical properties according to USP/NF requirements. The dissolution results revealed that tablets containing PEG6000 (1:10) have the most rapid release rate, followed by the formula containing both PEG6000 and PMMA, while that including PMMA alone showed the slowest dissolution rate. Moreover, In-vivo studies for each of the above four formulations, were performed using four mice groups. The most effective formula in decreasing the blood glucose level, through the first 6 hours, was that containing GZ and PEG6000, 1:10. However, formula containing the combination of enhanced and sustained GZ was the most effective in decreasing the blood glucose level through 16 hours. Successful in-vitro in-vivo correlations could be detected between the percent released and the percent decreasing of blood glucose level after 0.5 hours.


Author(s):  
KUMAR BABU PASUPULETI ◽  
VENKATACHALAM A. ◽  
BHASKAR REDDY KESAVAN

Objective: This study is to formulate Nebivolol into a Pulsatile liquid, solid composite compression coated tablet, which will delay the release of the drug in early morning hypertension conditions. Methods: The liquid, solid composite tablet was formulated and compressed with the ethylcellulose coating polymer. The percent in vitro drug release of the liquid solid composite compressed tablet was tested. Based on disintegration time and wetting time, the LCS2, LCS3, LSC6, LCS7 and LCS12 formulations were found to be the optimized solid-liquid compacts fast-dissolving core tablet formulations, which may be excellent candidates for further coating with polymer to transfer into press coated pulsatile tablet formulations. Coating the core tablet with varying ethyl cellulose concentrations resulted in five different formulations of the pulsatile press-coated tablet (CT1, CT2, CT3, CT4, CT5). In vitro drug release, in vitro release, kinetic studies, in vivo pharmacokinetic and stability tests were all performed for the prepared pulsatile press coated tablet. Results: CT3 tablets are coated with ethyl cellulose polymer, which shows maximum controlled drug release from the core tablet i.e. 96.34±1.2% at 8th h. It shows there was an efficient delay in drug release form core tablet i.e. up to 3 h, followed by the maximum amount of drug release of 96.34±2.4 at 8h. Which shows the core drug will be more efficiently protected from the gastric acid environment 1.2 pH, duodenal environment 4.0 pH and release drug only in the small intestine. Conclusion: According to the findings, CT3 Pulsatile press-coated tablet increased the bioavailability of Nebivolol by 3.11 percent.


1996 ◽  
Vol 21 (1) ◽  
pp. 27-31 ◽  
Author(s):  
H. Y. Karasulu ◽  
G. Ertan ◽  
T. Köse ◽  
T. Günerí

2011 ◽  
Vol 52 (05) ◽  
pp. 371-378
Author(s):  
Antonio Cuadrado ◽  
Alicia Gascón ◽  
Rosa Hernández ◽  
Ana Castilla ◽  
Ane Maza ◽  
...  
Keyword(s):  

2007 ◽  
Vol 67 (2) ◽  
pp. 515-523 ◽  
Author(s):  
Manish Ghimire ◽  
Fiona J. McInnes ◽  
David G. Watson ◽  
Alexander B. Mullen ◽  
Howard N.E. Stevens

Blood ◽  
2012 ◽  
Vol 120 (19) ◽  
pp. 4018-4027 ◽  
Author(s):  
Constanze Breitinger ◽  
Emanuel Maethner ◽  
Maria-Paz Garcia-Cuellar ◽  
Robert K. Slany

Abstract HOX proteins are widely involved in hematopoietic development. These transcription factors combine a conserved DNA-binding homeobox with a divergent N-terminus that mediates interaction with variable cofactors. The resulting combinatorial diversity is thought to be responsible for mammalian HOX specificity. Contrasting this proposed mechanism for normal HOX function, here we demonstrate that, in the context of hematopoietic immortalization and leukemogenesis, individual HOX properties are governed almost exclusively by the homeodomain. Swap experiments between HOXA1 and HOXA9, 2 members of nonrelated paralog groups, revealed that gene expression patterns of HOX transformed cells in vitro are determined by the nature of the homeodomain. Similar results were seen in vivo during HOX-mediated leukemogenesis. An exchange of the homeodomains was sufficient to convert the slow, low-penetrance phenotype of HOXA1-induced leukemia to the aggressive fast-acting disease elicited by HOXA9 and vice versa. Mutation and deletion studies identified several subregions within the DNA binding domain responsible for paralog specificity. Previously defined binding sites for PBX cofactors within the exchangeable, nonhomeobox segment were dispensable for in vitro oncogenic HOX activity but affected in vivo disease development. The transcriptional activator domain shared by HOXA1 and HOXA9 at the very N-terminus proved essential for all transformation.


2021 ◽  
Author(s):  
Yu Wei ◽  
Buhari Yusuf ◽  
Wang Shuai ◽  
Tian Xirong ◽  
H. M. Adnan Hameed ◽  
...  

Toxicity and inconvenience associated with the use of injectable drug-containing regimens for tuberculosis (TB) have made all-oral regimens a preferred alternative. Widespread resistance to fluoroquinolones and pyrazinamide makes it essential to identify new drug candidates and study their effects on current regimens for TB. TB47 is a pyrazolo[1,5-a]pyridine-3-carboxamide with powerful synergistic in vitro and in vivo activities against mycobacteria, especially with clofazimine. Here, we investigated the bactericidal and sterilizing activities of novel oral regimens containing TB47 + clofazimine + linezolid, and the potential roles of levofloxacin and/or pyrazinamide in such drug combinations. Using a well-established mouse model, we assessed the effect of these regimens on bacterial burden in the lung during treatment and relapse (4 months after stopping treatment + immunosuppression). Our findings indicate that the TB47 + clofazimine + linezolid + pyrazinamide, with/without levofloxacin, regimens had fast-acting (4 months) sterilizing activity and no relapse was observed. When pyrazinamide was excluded from the regimen, treatment times were longer (5-6 months) to achieve sterilizing conditions. We propose that TB47 + clofazimine + linezolid can form a highly sterilizing block for use as an alternative pan-TB regimen.


Sign in / Sign up

Export Citation Format

Share Document