The effect of screw configuration and formulation variables on liquid requirements and granule quality in a continuous twin screw wet granulation process

Author(s):  
L. Vandevivere ◽  
E. Van Wijmeersch ◽  
O. Häusler ◽  
T. De Beer ◽  
C. Vervaet ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 210
Author(s):  
Lise Vandevivere ◽  
Maxine Vangampelaere ◽  
Christoph Portier ◽  
Cedrine de Backere ◽  
Olaf Häusler ◽  
...  

The suitability of pharmaceutical binders for continuous twin-screw wet granulation was investigated as the pharmaceutical industry is undergoing a switch from batch to continuous manufacturing. Binder selection for twin-screw wet granulation should rely on a scientific approach to enable efficient formulation development. Therefore, the current study identified binder attributes affecting the binder effectiveness in a wet granulation process of a highly soluble model excipient (mannitol). For this formulation, higher binder effectiveness was linked to fast activation of the binder properties (i.e., fast binder dissolution kinetics combined with low viscosity attributes and good wetting properties by the binder). As the impact of binder attributes on the granulation process of a poorly soluble formulation (dicalcium phosphate) was previously investigated, this enabled a comprehensive comparison between both formulations in current research focusing on binder selection. This comparison revealed that binder attributes that are important to guide binder selection differ in function of the solubility of the formulation. The identification of critical binder attributes in the current study enables rational and efficient binder selection for twin-screw granulation of well soluble and poorly soluble formulations. Binder addition proved especially valuable for a poorly soluble formulation.


2020 ◽  
Vol 585 ◽  
pp. 119466 ◽  
Author(s):  
L. Vandevivere ◽  
P. Denduyver ◽  
C. Portier ◽  
O. Häusler ◽  
T. De Beer ◽  
...  

2015 ◽  
Vol 496 (2) ◽  
pp. 571-582 ◽  
Author(s):  
Mohammed F. Saleh ◽  
Ranjit M. Dhenge ◽  
James J. Cartwright ◽  
Michael J. Hounslow ◽  
Agba D. Salman

Author(s):  
A. Ryckaert ◽  
D. Van Hauwermeiren ◽  
J. Dhondt ◽  
A. De Man ◽  
A. Funke ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 928
Author(s):  
Ashish Kumar ◽  
Stefan Radl ◽  
Krist V. Gernaey ◽  
Thomas De Beer ◽  
Ingmar Nopens

Experimental characterization of solid-liquid mixing for a high shear wet granulation process in a twin-screw granulator (TSG) is very challenging. This is due to the opacity of the multiphase system and high-speed processing. In this study, discrete element method (DEM) based simulations are performed for a short quasi-two-dimensional simulation domain, incorporating models for liquid bridge formation, rupture, and the effect of the bridges on inter-particular forces. Based on the knowledge gained from these simulations, the kneading section of a twin-screw wet granulation process was simulated. The time evolution of particle flow and liquid distribution between particles, leading to the formation of agglomerates, was analyzed. The study showed that agglomeration is a rather delayed process that takes place once the free liquid on the particle surface is well distributed.


Author(s):  
Singh K. ◽  
Pandit K. ◽  
Mishra N.

The matrix tablets of cinnarizine and nimodipine were prepared with varying ratio of Carbopol- 971P and co-excipients of varying hydrophilicity (i.e. dicalcium phosphate and spray dried lactose) by direct compression and wet granulation using alcoholic mucilage. The prepared tablets were evaluated for weight variation, hardness and friability. The influence of concentration of the matrix forming material and co-excipients on the release rate of the drug was studied. The release rate of Cinnarizine (more soluble drug) from tablets followed diffusion controlled mechanism whereas for nimodipine (less soluble drug), the drug release followed case-II or super case- II transport mechanism based on Korsmeyer- Peppas equation. The results indicated that the drug release from matrix tablets was increases with increase in hydrophilicity of drug and co-excipients. The release of drug also increased with thermal treatment and decreasing polymer concentration.


Author(s):  
Dumpeti Janardhan ◽  
Joginapally Sreekanth ◽  
P.Theja Pavan Kumar ◽  
M.Vamshi Krishna

The purpose of this study was to evaluate the potential of polymers for masking the taste of bitter drugs when incorporated into orally disintegrating tablets. The tablets were produced by simple wet granulation technique with a model compound (baclofen) which is moderately bitter. The formulating procedure had two variables to obtain good taste masking with desirable characteristics. The optimal granulation process parameters were polymer selection and its concentration (w/w), suitable for pilot scale level. Dextrates, β- cyclodextrin, eudragit EPO and PVP K-30 were used in preparation of granules by using water and iso-propyl alcohol. Crospovidone was used intra and extra granularly as superdisintegrant.  Sodium bicarbonate and citric acid were used as effervescent for fast disintegration of tablets, which also optionally act as desensitizer of taste buds. Results from evaluation of tablets indicated a disintegration time (avg) of 30-35 sec and 100% drug release was achieved within 5 min. But taste masking was achieved by only with eudragit EPO. Results from an evaluation by a panel of six human volunteers demonstrated that the orally disintegrating tablets which are prepared by using polymer Eudragit EPO (5% and 7.5% w/w of tablet) and PVP (7.5% w/w of tablet) improved taste, significantly. On studying physical parameters, F9 formulation demonstrated acceptable level of hardness and friability with good taste masking and it was thus considered as an optimized formulation


Sign in / Sign up

Export Citation Format

Share Document