Enhanced gas-phase photocatalytic oxidation of n-pentane using high visible-light-driven Fe-doped WO3 nanostructures

2018 ◽  
Vol 6 (5) ◽  
pp. 6741-6748 ◽  
Author(s):  
Maryam Torabi Merajin ◽  
Mohammad Nasiri ◽  
Ebrahim Abedini ◽  
Shahram Sharifnia
2017 ◽  
Vol 46 ◽  
pp. 416-425 ◽  
Author(s):  
Jiang Wu ◽  
Chaoen Li ◽  
Xiantuo Chen ◽  
Jing Zhang ◽  
Lili Zhao ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ting-Chung Pan ◽  
Hung-Chang Chen ◽  
Guan-Ting Pan ◽  
Chao-Ming Huang

An environmentally friendly visible-light-driven photocatalyst, silver vanadates/SBA-15, was prepared through an incipient wetness impregnation procedure with silver vanadates (SVO) synthesized under a hydrothermal condition without a high-temperature calcination. The addition of mesoporous SBA-15 improves the formation of nanocrystalline silver vanadates. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirms the presence of Brønsted and Lewis acids on the SVO/SBA-15 composites. The results of photoluminescence spectra indicated that the electron-hole recombination rate have been effectively inhibited when SVO was loaded with mesoporous SBA-15. All the composites loaded with various amount of SVO inherit the higher adsorption capacity and larger mineralization yield than those of P-25 (commercial TiO2) and pure SVO. The sample loaded with 51% of SVO (51SVO/SBA-15) with mixed phases of Ag4V2O7and α-Ag3VO4exhibits the best photocatalytic activity. A favorable crystalline phase combined with high intensities of Brønsted and Lewis acids is considered the main cause of the enhanced adsorption capacity and outstanding photoactivity of the SVO/SBA-15 composites.


2020 ◽  
Author(s):  
Ravi Shankar ◽  
Daphne Lubert-Perquel ◽  
Elan Mistry ◽  
Irena Nevjestić ◽  
Sandrine Heutz ◽  
...  

<p>Developing robust, multifunctional photocatalysts that can facilitate both hydrogen evolution via photoreforming of water and gas phase CO2 photoreduction is highly desirable with the long-term vision of integrated photocatalytic setups. Here, we present a new addition to the boron nitride (BN) photocatalyst material platform, boron-doped boron oxynitride (B-BNO), capable of fulfilling this goal. Detailed EPR studies revealed hyperfine interactions between free charges located on discrete OB3 sites, exhibiting an out-of-plane symmetry, and the nuclei of neighbouring boron atoms. This material resolves two long-standing bottlenecks associated to BN-based materials concomitantly: instability in water and lack of photo activity under visible light. We show that B-BNO maintains prolonged stability in water for at least three straight days and can facilitate both liquid phase H2 evolution and gas phase CO2 photoreduction, using UV-Vis and deep visible irradiation (λ > 550 nm), without any cocatalysts. The evolution rates, apparent quantum yields, and selectivities observed for both reactions with B-BNO exceed those of its porous BNO counterpart, P25 TiO2 and bulk g-C3N4. This work provides scope to expand the BN photocatalyst platform to a wider range of reactions.</p>


2020 ◽  
Author(s):  
Ravi Shankar ◽  
Daphne Lubert-Perquel ◽  
Elan Mistry ◽  
Irena Nevjestić ◽  
Sandrine Heutz ◽  
...  

<p>Developing robust, multifunctional photocatalysts that can facilitate both hydrogen evolution <i>via</i> photoreforming of water and gas phase CO<sub>2</sub> photoreduction is highly desirable with the long-term vision of integrated photocatalytic setups. Here, we present a step-change in the family of boron oxynitride materials by introducing the first example of a B-doped boron oxynitride (B-BNO). This material resolves an on-going bottleneck associated with BN-based materials, i.e. the lack of photoactivity under visible light. Detailed EPR studies revealed distinct hyperfine interactions between the free oxygen radicals and 3 neighbouring boron nuclei. This confirmed isolated OB<sub>3 </sub>sites, which contribute to band gap narrowing, as the radical species and origin of paramagnetism in BNO materials. We show that B-BNO can facilitate both liquid phase H<sub>2 </sub>evolution and gas phase CO<sub>2</sub> photoreduction, using UV-Vis and deep visible irradiation (λ > 550 nm), without any co-catalysts. The evolution rates, quantum efficiencies, and selectivities observed for both reactions with B-BNO exceed those of its porous BNO counterpart, P25 TiO<sub>2</sub> and bulk g-C<sub>3</sub>N<sub>4</sub>.</p>


2015 ◽  
Vol 17 (43) ◽  
pp. 28809-28817 ◽  
Author(s):  
Man Ou ◽  
Haoyu Nie ◽  
Qin Zhong ◽  
Shule Zhang ◽  
Lei Zhong

Three 3D ms-BiVO4 superstructures, including a flower, a double-layer half-open flower and a hollow tube with square cross-sections has been synthesized and used for the photocatalytic oxidation of NO. The identification of the main active species in the PCO of the NO process was also clarified.


Sign in / Sign up

Export Citation Format

Share Document