Effect of biochar on reactor performance and methane generation during the anaerobic digestion of food waste treatment at long-run operations

2019 ◽  
Vol 7 (4) ◽  
pp. 103067 ◽  
Author(s):  
Abdulmoseen Segun Giwa ◽  
Heng Xu ◽  
Fengmin Chang ◽  
Juanjuan Wu ◽  
Yuhuan Li ◽  
...  
2018 ◽  
Vol 72 ◽  
pp. 218-226 ◽  
Author(s):  
Meijuan Yu ◽  
Mingxing Zhao ◽  
Zhenxing Huang ◽  
Kezhong Xi ◽  
Wansheng Shi ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1018
Author(s):  
Vijayalakshmi Arelli ◽  
Sudharshan Juntupally ◽  
Sameena Begum ◽  
Gangagni Rao Anupoju

The aim of this study was to treat food waste containing 25% total solids (TS) through dry anaerobic digestion (dry AD) process at various pressures (0.5 to 2.5 kg/cm2) and different time duration (20 to 100 min) to understand the impact of pretreatment in enhancing the methane generation potential along with insights on scale up. The findings revealed that vs. reduction and methane yield of 60% and 0.25 L CH4/(g VSadded) can be achieved with pretreated food waste at two kilograms per square centimeter, while pretreatment of food waste at 2 kg/cm2 for 100 min enhanced the vs. reduction from 60% to 85% and methane yield from 0.25 to 0.368 L CH4/(g VSadded). However, the net energy indicated that 40 min of pre -treatment at two kilograms per square centimeter can be a suitable option as methane yield and vs. reduction of 0.272 L CH4/(g VSadded) and 70%, respectively was achieved. The vs. reduction and the methane yield of 45% and 0.14 L CH4/(g VSadded), respectively was obtained from untreated food waste which illustrated that pretreatment had significantly impacted on the enhancement of methane generation and organic matter removal which can make the dry AD process more attractive and feasible at commercial scale.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 46
Author(s):  
Finger ◽  
Stepanovic ◽  
Llano

Anaerobic digestion of urban organic wastes, farming slurries or sewage sludge is a common practice in waste treatment plants. In the city of Reykjavik, the organic waste fraction constituted by 60% of biomass and 40% of food waste will be transformed by the local waste company SORPA providing biofuel for up to 10% of the cars. Such measures belong to the 2018-2030 Climate Action Plan from the Icelandic Government.


2012 ◽  
Vol 485 ◽  
pp. 306-309
Author(s):  
Li Hong Wang ◽  
Qun Hui Wang ◽  
Wei Wei Cai

Solid-state anaerobic digestion (SSAD) of distiller’s grains (DG) and kitchen waste (KW) for biogas was investigated. Six DG to KW ratios of 10/1, 8/1, 6/1, 4/1, 1/0, and 0/1 was used. The results showed that in 48 digestion days the co-digestion with DG to KW ratio of 8:1 obtained the highest methane yield of 159.74mL/gTS, TS and VS reductions of 58.7% and 71.8%, hemicellulase, cellulose and lignin reductions of 46.7%, 45.4% and 4.0%. Compared to mono-digestions of DG or KW, co-digestion of DG and FW had a good synergistic effect. It indicated that SSAD of cellulosic-based waste and food waste could be one of the options for efficient biogas production and waste treatment


2019 ◽  
Vol 31 (11) ◽  
pp. 2575-2578
Author(s):  
M.N.I. Siddique ◽  
B.K. Zaied ◽  
M.N. Kabir ◽  
M.F. Ahmad

The valorization of agro-modern waste through anaerobic codigestion signifies a remarkable prospect for waste treatment and sustainable energy source generation. This study intended to improve the codigestion of food waste and petrochemical wastewater by an advanced two-phase process. In view of concentric acidogenic and methanogenic stages, intended for upgrading execution and diminishing pollution. The ideal food waste to petrochemical wastewater proportion was assessed under batch operations. From that point, codigestion was carried out by continuous feeding operations weighting single-and two-phase digestions. The outcomes exhibited that the supplementation of petrochemical wastewater in codigestion with food waste incredibly improved the anaerobic system. The maximum methane generation was acquired codigesting the two wastes at equivalent proportion by utilizing the creative two-phase system. The proposed framework achieved the highest methane production of 259 mL/g volatile solid, which is more than double than the single-phase system and 11 % greater than that of conventional two-phase system.


Author(s):  
Franco Cecchi ◽  
Cristina Cavinato

Food waste, among the organic wastes, is one of the most promising substrates to be used as a renewable resource. Wide availability of food waste and the high greenhouse gas impacts derived from its inappropriate disposal, boost research through food waste valorization. Several innovative technologies are applied nowadays, mainly focused on bioenergy and bioresource recovery, within a circular economy approach. Nevertheless, food waste treatment should be evaluated in terms of sustainability and considering the availability of an optimized separate collection and a suitable treatment facility. Anaerobic codigestion of waste-activated sludge with food waste is a way to fully utilize available anaerobic digestion plants, increasing biogas production, energy, and nutrient recovery and reducing greenhouse gas (GHG) emissions. Codigestion implementation in Europe is explored and discussed in this paper, taking into account different food waste collection approaches in relation to anaerobic digestion treatment and confirming the sustainability of the anaerobic process based on case studies. Household food waste disposal implementation is also analyzed, and the results show that such a waste management system is able to reduce GHG emissions due to transport reduction and increase wastewater treatment performance.


Sign in / Sign up

Export Citation Format

Share Document