CdS nanorods supported copper-nickel hydroxide for hydrogen production under direct sunlight irradiation

Author(s):  
Imran Majeed ◽  
Ayesha Arif ◽  
Muhammad Faizan ◽  
Mohd Adnan Khan ◽  
Muhammad Imran ◽  
...  
2017 ◽  
Vol 515 (1) ◽  
pp. 127-133
Author(s):  
Lei Xu ◽  
Qian Lang ◽  
Yiping Zhao ◽  
Wei Wang ◽  
Hao Liu ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 427 ◽  
Author(s):  
Jinrong Lu ◽  
Xin Zhang ◽  
Huiyuan Gao ◽  
Wenquan Cui

Three-dimensional PANI/CdSNRs-SiO2 hydrogel (CdS NRs-PANI-SiO2) was synthesized by loading polyaniline (PANI) onto the semiconductor CdS nanorods (NRs) surface and loading the binary complex on SiO2 gel. The structure, optical properties, and electrochemical properties of the composite were studied in detail. The hydrogen production amount of CdS NRs-PANI (3%)-SiO2 (20%) increased in comparison with CdS NRs and reached 43.25 mmol/g in 3 h under visible light. The three-dimensional structure of SiO2 hydrogel increased the specific surface area of the catalyst, which was conducive to exposing more active sites of the catalyst. In addition, the conductive polymer PANI coated on CdS NRs played the role of conductive charge and effectively inhibited the photo-corrosion of CdS NRs. In addition, the recovery experiment showed that the recovery rate of the composite catalyst reached 90% and hydrogen production efficiency remained unchanged after five cycles, indicating that the composite catalyst had excellent stability.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 732
Author(s):  
Yen-Sheng Li ◽  
Alex Fang ◽  
Gang-Juan Lee ◽  
Jerry J. Wu ◽  
Yu-Cheng Chang ◽  
...  

Cerium dioxide (CeO2, ceria), a promising and abundant catalytic material with high-efficiency, nontoxicity, photochemical stability, and affordability, can be used as a photocatalyst to photocatalytically degrade organics and split water for hydrogen production under ultraviolet (UV) irradiation (about 5% of solar energy). However, the applications of the CeO2 photocatalyst are limited due to low photocatalytic efficiency under sunlight irradiation. In this study, a nanosized CeO2 powder was prepared by the precipitation method. Subsequently, various amounts of polyaniline (PANI) nanoparticles were deposited onto the surface of the CeO2 nanoparticles to form a heterostructure by the polymerization method. The crystal structure, morphology, surface and optical properties of the CeO2/PANI nanoparticles were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) absorption spectroscopy, and photoluminescence (PL). Experimental results demonstrated that PANI deposition improved the light absorption of CeO2 nanoparticles in the visible light region. The heterostructured CeO2/PANI nanoparticle with 4 wt % PANI deposition exhibited optimal photocatalytic activities with a hydrogen production rate of 462 μmolg−1 within 6 h and a methyl orange (MO) degradation rate of 45% within 4 h under visible light irradiation. The photocatalytic mechanisms of the composite powder are also proposed in this report.


Sign in / Sign up

Export Citation Format

Share Document