Nitrogen removal improvement by denitrifying ammonium oxidation in anoxic/oxic-sequence batch biofilm reactor system

Author(s):  
Weihua Zhao ◽  
Meixiang Wang ◽  
Meng Bai ◽  
Zhaoshuo Tian ◽  
Shanyun Wang ◽  
...  
Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Yu Huang ◽  
Yongzhen Peng ◽  
Donghui Huang ◽  
Jiarui Fan ◽  
Rui Du

A partial-denitrification coupling with anaerobic ammonium oxidation (anammox) process (PD/A) in a continuous-flow anoxic/oxic (A/O) biofilm reactor was developed to treat carbon-limited domestic wastewater (ammonia (NH4+-N) of 55 mg/L and chemical oxygen demand (COD) of 148 mg/L in average) for about 200 days operation. Satisfactory NH4+-N oxidation efficiency above 95% was achieved with rapid biofilm formation in the aerobic zone. Notably, nitrite (NO2−-N) accumulation was observed in the anoxic zone, mainly due to the insufficient electron donor for complete nitrate (NO3−-N) reduction. The nitrate-to-nitrite transformation ratio (NTR) achieved was as high as 64.4%. After the inoculation of anammox-enriched sludge to anoxic zones, total nitrogen (TN) removal was significantly improved from 37.3% to 78.0%. Anammox bacteria were effectively retained in anoxic biofilm utilizing NO2−-N produced via the PD approach and NH4+-N in domestic wastewater, with the relative abundance of 5.83% for stable operation. Anammox pathway contributed to TN removal by a high level of 38%. Overall, this study provided a promising method for mainstream nitrogen removal with low energy consumption and organic carbon demand.


2020 ◽  
Vol 81 (9) ◽  
pp. 2033-2042 ◽  
Author(s):  
Ivelina Dimitrova ◽  
Agnieszka Dabrowska ◽  
Sara Ekström

Abstract Partial nitritation and anaerobic ammonium oxidation (PNA) is a useful process for the treatment of nitrogen-rich centrate from the dewatering of anaerobically digested sludge. A one-stage PNA moving bed biofilm reactor (MBBR) was started up without inoculum at Klagshamn wastewater treatment plant, southern Sweden. The reactor was designed to treat up to 200 kgN d−1, and heated dilution water was used during start-up. The nitrogen removal was >80% after 111 days of operation, and the nitrogen removal rate reached 1.8 gN m−2 d1 at 35 °C. The start-up period of the reactor was comparable to that of inoculated full-scale systems. The operating conditions of the system were found to be important, and online control of the free ammonia concentration played a crucial role. Ex situ batch activity tests were performed to evaluate process performance.


2020 ◽  
Vol 81 (5) ◽  
pp. 1071-1079
Author(s):  
Caimeng Wang ◽  
Lirong Lei ◽  
Fangrui Cai ◽  
Youming Li

Abstract In this study, the completely autotrophic nitrogen removal over nitrite (CANON) process was initiated in a sequencing batch biofilm reactor (SBBR). Then the reactor was operated under different IC/N ratios. The total inorganic nitrogen removal efficiency (TINRE) at IC/N ratios of 0.75, 1.0, 1.25, 1.5 and 2.0 were 37.0 ± 11.0%, 58.9 ± 10.2%, 73.9 ± 3.2%, 73.6 ± 1.8% and 72.6 ± 2.0%, respectively. The suitable range of IC/N ratio in this research is 1.25–2.0. The poor nitrogen removal performance at IC/N ratio of 0.75 was due to the lack of growth substrate for AnAOB and low pH simultaneously; at IC/N ratio of 1.0 this was because the substrate concentration was insufficient for fully recovering the AnAOB activities. Microbial analysis indicated that Nitrosomonas, Nitrospira and Candidatus Brocadia were the main ammonium oxidation bacteria (AOB), nitrite oxidation bacteria (NOB) and anammox bacteria (AnAOB), respectively. In addition, at IC ratios of 1.25 or higher, denitrification was promoted with the rise of IC/N ratio, which might be because the change of IC concentrations caused cell lysis of microorganisms and provided organic matter for denitrification.


2012 ◽  
Vol 66 (12) ◽  
pp. 2630-2637 ◽  
Author(s):  
A. Mulder ◽  
A. I. Versprille ◽  
D. van Braak

The feasibility of sustainable nitrogen removal was investigated in a two stage biofilm configuration consisting of a MBBR (Moving Bed Biofilm Reactor) and a Deamox reactor (Biobed-EGSB). The MBBR is used for nitrification and the denitrifying ammonium oxidation (Deamox) is aimed at a nitrogen removal process in which part of the required nitrite for the typical anammox reaction originated from nitrate. Anaerobic pre-treated potato wastewater was supplied to a MBBR and Deamox reactor operated in series with a bypass flow of 30%. The MBBR showed stable nitrite production at ammonium-loading rates of 0.9–1.0 kg NH4-N/m3 d with ammonium conversion rates of 0.80–0.85 kg NH4-N/m3 d. The nitrogen-loading rate and conversion rate of the Deamox reactor were 1.6–1.8 and 1.6 kg N/m3 d. The maximum ammonium removal capacity in the Deamox reactor was 0.6 kg NH4-N/m3 d. The removal efficiency of soluble total nitrogen reached 90%. The Deamox process performance was found to be negatively affected during decline of the operating temperature from 33 to 22 °C and by organic loading rates with a chemical oxygen demand (COD)/NO2-N ratio >1.


Author(s):  
Zulkarnaini Zulkarnaini ◽  
Ansiha Nur ◽  
Wina Ermaliza

Anaerobic ammonium oxidation (anammox) is the process of converting ammonium directly into nitrogen gas with nitrite as an electron acceptor under anaerobic conditions. This process is more effective than conventional nitrification-denitrification but is very dependent on several parameters, one of which is temperature. The optimum temperature range for the growth of anammox bacteria is 30-400C. The purpose of this research was to determine the efficiency of nitrogen removal by anammox process using palm fibers in the Up-Flow Anaerobic Sludge Blanket (UASB) reactor in the tropical temperature. The experiment was conducted at a laboratory scale with a variation of Hydraulic Retention Time (HRT) 24 h and 12 h using artificial wastewater. The reactor was inoculated with anammox granule genus Candidatus Brocadia. The concentration of ammonium, nitrite, and nitrate in the influent and effluent were measured using a UV-Vis spectrophotometer based on standard method. Based on the experiment, the ratio ΔNH4+-N:ΔNO2--N and ΔNO3--N:ΔNH4+-N similar with stoichiometric of anammox. The maximum Nitrogen removal performance (NRT) achieved 0.11 kg-N/m3.d at Nitrogen Loading Rate (NLR) 0.14 kg-N/m3.d and 0.20 kg-N/m3.d at NLR 0.29 kg-N/m3.d. The removal efficiency for Ammonium Conversion Efficiency (ACE) and Nitrogen Removal Efficiency (NRE) in HRT 24 h were 79% and 76%, respectively while decreased in HRT 12 h were 72% and 69%, respectively. Anammox process can be applied in the tropical temperature at a laboratory scale using a UASB reactor with palm fiber as the carrier.


2014 ◽  
Vol 9 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Anneli Andersson Chan ◽  
Niklas Johansson ◽  
Magnus Christensson

Many wastewater treatment plants need to improve their nitrogen removal due to stricter requirements and increasing loads. This often means larger bioreactor volumes, which can be very expensive and is sometimes impossible if space is limited. Therefore, there is a need for compact hybrid solutions that can increase capacity within existing volumes. Two full-scale demonstration projects using moving bed biofilm reactor (MBBR) technology has proven to be an efficient way to treat nitrogen in existing volumes at Sundet wastewater treatment plant in Växjö. Increased nitrification and denitrification capacity in parts of the main stream were demonstrated through the Hybas™ process, a combination of MBBR and activated sludge using the integrated fixed-film activated sludge technology. The ANITA™ Mox process, using autotrophic N-removal through anaerobic ammonium oxidation (anammox), provided high nitrogen removal for the sludge liquor. Data collected on-site for over a year are analyzed and compared with the performance of conventional treatment systems. These two full-scale demonstration projects have been a successful learning experience in identifying and correcting both process and operational issues, which may not have arisen at pilot scale. The set objectives in terms of nitrogen removal were met for both processes and design modifications have been identified that will improve future operation at Sundet WWTP.


RSC Advances ◽  
2020 ◽  
Vol 10 (48) ◽  
pp. 28838-28847
Author(s):  
Zhiye Sun ◽  
Mei Li ◽  
Guofeng Wang ◽  
Xiaojun Yan ◽  
Yi Li ◽  
...  

A pilot-scale anaerobic/anoxic/aerobic-membrane aerated biofilm reactor (A2/O-MABR) system was constructed to enhance carbon and nitrogen removal.


2018 ◽  
Vol 9 (3) ◽  
pp. 174-187
Author(s):  
Camila Ferreira Alves ◽  
Carla Beatriz Casagrande Bortoluci ◽  
Eduardo Paniguel Oliveira ◽  
Matheus Marques Pizzo ◽  
Renata Piacentini Rodriguez

O lançamento de efluentes em corpos receptores ou em redes de esgoto deve ser monitorado e atender a legislação vigente. As máximas concentrações permitidas para o lançamento de nutrientes, especialmente o nitrogênio, se tornaram mais restritivas após 2005. O nitrogênio é um nutriente que está presente em diferentes tipos de águas residuárias, como chorume, efluentes industriais e esgotamento sanitário. O descarte deste tipo de efluente sem redução da carga de nitrogênio resulta em impactos sobre a fauna e flora de ecossistemas em geral. A remoção de nitrogênio está baseada na conversão de amônia a nitrito e nitrato (nitrificação) e posterior redução destes à nitrogênio gasoso (desnitrificação). Diversos métodos biológicos foram e têm sido desenvolvidos para remover nitrogênio de efluentes baseados em configurações complexas de reatores em série ou em sistemas unicompartimentados. Recentemente, novas rotas metabólicas envolvendo processos mais eficientes e econômicos têm sido apresentadas. Este trabalho apresenta uma revisão da literatura para os processos de nitrificação e desnitrificação convencional, nitrificação e desnitrificação simultânea, Sharon (Single Reactor System for High Activity Ammonia Removal Over Nitrite), Anammox (Anaerobic Ammonium Oxidation) e Canon (Completely Autotrophic Nitrogen Removal Over Nitrite). As principais características de cada processo foram abordadas, destacando-se as principais reações envolvidas, crescimento biológico, inibidores, requisitos e aplicações.


Sign in / Sign up

Export Citation Format

Share Document