Fluorobenzene diluted low-density electrolyte for high-energy density and high-performance lithium-sulfur batteries

Author(s):  
ZhiLong Han ◽  
ShuPing Li ◽  
MengJun Sun ◽  
RenJie He ◽  
Wei Zhong ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20173-20183
Author(s):  
Yasai Wang ◽  
Guilin Feng ◽  
Yang Wang ◽  
Zhenguo Wu ◽  
Yanxiao Chen ◽  
...  

Lithium–sulfur batteries are considered to be promising energy storage devices owing to their high energy density, relatively low price and abundant resources.


Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


MRS Advances ◽  
2018 ◽  
Vol 3 (60) ◽  
pp. 3501-3506 ◽  
Author(s):  
Gaind P. Pandey ◽  
Joshua Adkins ◽  
Lamartine Meda

ABSTRACTLithium sulfide (Li2S) is one of the most attractive cathode materials for high energy density lithium batteries as it has a high theoretical capacity of 1166 mA h g-1. However, Li2S suffers from poor rate performance and short cycle life due to its insulating nature and polysulfide shuttle during cycling. In this work, we report a facile and viable approach to address these issues. We propose a method to synthesize a Li2S based nanocomposite cathode material by dissolving Li2S as the active material, polyvinylpyrrolidone (PVP) as the carbon precursor, and graphene oxide (GO) as a matrix to enhance the conductivity, followed by a co-precipitation and high-temperature carbonization process. The Li2S/rGO cathode yields an exceptionally high initial capacity of 817 mAh g-1 based on Li2S mass at C/20 rate and also shows a good cycling performance. The carbon-coated Li2S/rGO cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing carbon coated Li2S/rGO composites as an outstanding system for high-performance lithium-sulfur batteries.


2018 ◽  
Vol 11 (9) ◽  
pp. 2372-2381 ◽  
Author(s):  
Gaoran Li ◽  
Wen Lei ◽  
Dan Luo ◽  
Yaping Deng ◽  
Zhiping Deng ◽  
...  

Stringed “tube on cube” hybrid architecture is developed for high-energy-density lithium–sulfur batteries with high sulfur loading and lean electrolyte.


2019 ◽  
Vol 31 (33) ◽  
pp. 1902228 ◽  
Author(s):  
Zhuosen Wang ◽  
Jiadong Shen ◽  
Jun Liu ◽  
Xijun Xu ◽  
Zhengbo Liu ◽  
...  

2016 ◽  
Vol 4 (44) ◽  
pp. 17381-17393 ◽  
Author(s):  
Jing Xu ◽  
Dawei Su ◽  
Wenxue Zhang ◽  
Weizhai Bao ◽  
Guoxiu Wang

The combination of the physical adsorption of lithium polysulfides onto porous graphene and the chemical binding of polysulfides to N and S sites promotes reversible Li2S/polysulfide/S conversion, realizing high performance Li–S batteries with long cycle life and high-energy density.


2013 ◽  
Vol 160 (8) ◽  
pp. A1169-A1170 ◽  
Author(s):  
Jean Fanous ◽  
Marcus Wegner ◽  
Marcelle B. M. Spera ◽  
Michael R. Buchmeiser

Sign in / Sign up

Export Citation Format

Share Document