In situ CCD video and voltammetric studies on enhanced cathodic peak observed at a hanging mercury drop electrode during consecutive two one-electron redox reactions in aprotic solutions

2008 ◽  
Vol 618 (1-2) ◽  
pp. 1-10 ◽  
Author(s):  
Md. Mominul Islam ◽  
Takeyoshi Okajima ◽  
Takeo Ohsaka
1991 ◽  
Vol 56 (3) ◽  
pp. 595-601 ◽  
Author(s):  
Jiří Barek ◽  
Gulamustafa Malik ◽  
Jiří Zima

Optimum conditions were found for the determination of 4-nitrobiphenyl by fast scan differential pulse voltammetry at a hanging mercury drop electrode in the concentration range 1 . 10-5 to 2 . 10-7 mol l-1. A further increase in sensitivity was attained by adsorptive accumulation of this substance on the surface of the working electrode, permitting determination in the concentration range (2 – 10) . 10-8 mol l-1 with one minute accumulation of the substance in unstirred solution or (2 – 10) . 10-9 mol l-1 with three-minute accumulation in stirred solution. Linear scan voltammetry can be used to determine 4-nitrobiphenyl in the concentration range (2 – 10) . 10-9 mol l-1 with five-minute accumulation in stirred solution, with the advantage of a smoother baseline and smaller interference from substances that yield only tensametric peaks.


Chemosensors ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 107
Author(s):  
Kequan Xu ◽  
Clara Pérez-Ràfols ◽  
Amine Marchoud ◽  
María Cuartero ◽  
Gastón A. Crespo

The widely spread use of the hanging mercury drop electrode (HMDE) for multi-ion analysis is primarily ascribed to the following reasons: (i) excellent reproducibility owing to the easy renewal of the electrode surface avoiding any hysteresis effect (i.e., a new identical drop is generated for each measurement to be accomplished); (ii) a wide cathodic potential window originating from the passive hydrogen evolution and solvent electrolysis; (iii) the ability to form amalgams with many redox-active metal ions; and (iv) the achievement of (sub)nanomolar limits of detection. On the other hand, the main controversy of the HMDE usage is the high toxicity level of mercury, which has motivated the scientific community to question whether the HMDE deserves to continue being used despite its unique capability for multi-metal detection. In this work, the simultaneous determination of Zn2+, Cd2+, Pb2+, and Cu2+ using the HMDE is investigated as a model system to evaluate the main features of the technique. The analytical benefits of the HMDE in terms of linear range of response, reproducibility, limit of detection, proximity to ideal redox behavior of metal ions and analysis time are herein demonstrated and compared to other electrodes proposed in the literature as less-toxic alternatives to the HMDE. The results have revealed that the HMDE is largely superior to other reported methods in several aspects and, moreover, it displays excellent accuracy when simultaneously analyzing Zn2+, Cd2+, Pb2+, and Cu2+ in such a complex matrix as digested soils. Yet, more efforts are required towards the definitive replacement of the HMDE in the electroanalysis field, despite the elegant approaches already reported in the literature.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1667
Author(s):  
Mikhail Karushev

Fast and reversible cobalt-centered redox reactions in metallopolymers are the key to using these materials in energy storage, electrocatalytic, and sensing applications. Metal-centered electrochemical activity can be enhanced via redox matching of the conjugated organic backbone and cobalt centers. In this study, we present a novel approach to redox matching via modification of the cobalt coordination site: a conductive electrochemically active polymer was electro-synthesized from [Co(Amben)] complex (Amben = N,N′-bis(o-aminobenzylidene)ethylenediamine) for the first time. The poly-[Co(Amben)] films were investigated by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM), in situ UV‑vis-NIR spectroelectrochemistry, and in situ conductance measurements between −0.9 and 1.3 V vs. Ag/Ag+. The polymer displayed multistep redox processes involving reversible transfer of the total of 1.25 electrons per repeat unit. The findings indicate consecutive formation of three redox states during reversible electrochemical oxidation of the polymer film, which were identified as benzidine radical cations, Co(III) ions, and benzidine di-cations. The Co(II)/Co(III) redox switching is retained in the thick polymer films because it occurs at potentials of high polymer conductivity due to the optimum redox matching of the Co(II)/Co(III) redox pair with the organic conjugated backbone. It makes poly-[Co(Amben)] suitable for various practical applications based on cobalt-mediated redox reactions.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Hee-Youb Song ◽  
Soon-Ki Jeong

Interfacial reactions strongly influence the performance of lithium-ion batteries, with the main interfacial reaction between graphite and propylene carbonate- (PC-) based electrolytes corresponding to solvent cointercalation. Herein, the redox reactions of solvated lithium ions occurring at the graphite interface in 1 M·LiClO4/PC were probed by chronopotentiometry, in situ atomic force microscopy (AFM), and in situ Raman spectroscopy. The obtained results revealed that high coulombic efficiency (97.5%) can be achieved at high current density, additionally showing the strong influence of charge capacity on the above redox reactions. Moreover, AFM imaging indicated the occurrence of solvent cointercalation during the first reduction, as reflected by the presence of hills and blisters on the basal plane of highly oriented pyrolytic graphite subjected to the above process.


Sign in / Sign up

Export Citation Format

Share Document