scholarly journals Photomodulation of electrical conductivity of a PCBM-doped free-standing lipid bilayer in buffer solution

2019 ◽  
Vol 832 ◽  
pp. 55-58 ◽  
Author(s):  
Kensaku Kanomata ◽  
Takafumi Deguchi ◽  
Teng Ma ◽  
Takumi Haseyama ◽  
Masanori Miura ◽  
...  
Author(s):  
K. L. Levine ◽  
D. V. Ryabokon ◽  
S. D. Khanin ◽  
R. V. Gelamo ◽  
N. A. Nikonorova

The paper studies multilayer graphenes in the form of free-standing films. The authors provide data about the morphology and electrical properties of films treated with plasma of various chemical composition. It is shown that it is possible to control the electrical properties of the surface and electron work function without significantly affecting its morphology. The obtained samples, combining mechanical flexibility with unreactiveness and high electrical conductivity, are promising for application in flexible charge storage devices.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1113 ◽  
Author(s):  
Bogumiła Kumanek ◽  
Tomasz Wasiak ◽  
Grzegorz Stando ◽  
Paweł Stando ◽  
Dariusz Łukowiec ◽  
...  

Despite the widespread use of sonication for individualization of nanomaterials, its destructive nature is rarely acknowledged. In this study, we demonstrated how exposure of the material to a hostile sound wave environment can be limited by the application of another preprocessing step. Single-walled carbon nanotubes (CNTs) were initially ground in a household coffee grinder, which enabled facile deagglomeration thereof. Such a simple approach enabled us to obtain high-quality CNT dispersion at reduced sonication time. Most importantly, electrical conductivity of free-standing films prepared from these dispersion was improved almost fourfold as compared with unground material eventually reaching 1067 ± 34 S/cm. This work presents a new approach as to how electrical properties of nanocarbon ensembles may be enhanced without the application of doping agents, the presence of which is often ephemeral.


2020 ◽  
Vol 12 (10) ◽  
pp. 1441-1445
Author(s):  
Huihun Kim ◽  
Seon-Hwa Choe ◽  
Milan K. Sadan ◽  
Changhyeon Kim ◽  
Kwon-Koo Cho ◽  
...  

Sulfurized polyacrylonitrile (S-PAN) is one of the best materials for addressing some of the intrinsic drawbacks of lithium–sulfur batteries, such as the intrinsic insulating properties of sulfur and the shuttle phenomenon. Moreover, while S-PAN nanofiber composites are flexible, they still presents shortcomings, such as low rate capability, which is due to their semiconductor electrical conductivity. In this study, we prepared S-PAN webs with high electrical conductivity via electrospinning using conducting agents. Additionally, we analyzed the electrochemical properties of the S-PAN webs prepared using various conducting agents (acetylene black, Ketjen black, and multi-walled carbon nanotubes). The specific capacity of the S-PAN web prepared using acetylene black was 740 mAh g–1 at the charge rate of 5 C. The excellent rate capability of S-PAN prepared using acetylene black was attributed to its low electrical resistance and low charge transfer resistance.


Author(s):  
Matsunori Nara

It is thought that a minus hydrogen ion is useful to the apotosis of a mitochondria and prevention of a necrosis, or prevention of the illness resulting from the oxygen radical in a human body. So, in this research, examination about the possibility and its practical use method of production of the hydrogen ion by which it was minus electrified was performed. First, the lipid bilayer as a medicine transporter of DDS (Drug Delivery System) was produced using the supercritical fluid. Next, experimental examination was performed for the purpose of enclosing the substance for hydrogen ion generating, and the substance for electronic accumulation with the inside of a lipid bilayer. Furthermore, fundamental examination was performed in order to use the enclosed minus hydrogen ion. In order to check what the electron of oxygen ion was taken into the hydrogen ion, and the minus hydrogen ion generated, electrical conductivity measurement was performed. By mixing and heating, 12CaO · 7Al2O3 and metal calcium, the electron was accumulated in the inside of the reaction object of 12CaO7Al2O3. The check of accumulation of the electron (anion) inside a reaction object was judged by measurement of the electrical conductivity before and behind processing. That is, when the electron was accumulated, I thought that the electrical conductivity of a reaction object increased. Moreover, this reaction object was used as an electronic transporter. In the range of the temperature set up in the liposome production experiment, and pressure, it could not say that the influence temperature and pressure affect the determination of the particle diameter of a liposome was large, but average particle diameter was about 10 micrometers. The following conclusions were obtained as a result of conducting a fundamental experiment for the purpose of production of a medicine which made the minus hydrogen ion include inside a lipid bilayer (liposome), and a confirmation of the validity as DDS in the living body. (1) The liposome suitable for DDS was able to be obtained. (2) By using metal magnesium and metal calcium, the minus hydrogen ion was able to be accumulated in the reaction inside of the body of alumina cement.


2019 ◽  
Vol 963 ◽  
pp. 157-160 ◽  
Author(s):  
Michael Schöler ◽  
Philipp Schuh ◽  
Johannes Steiner ◽  
Peter J. Wellmann

We report on the modeling of the temperature field and supersaturation in front of the SiC crystal growth interface of a physical vapor transport growth configuration. The data are compared with experimental results, like the growth of free standing 3C-SiC wafers with a diameter of 50 mm and a thickness of 870 µm. Special emphases is put on the precise handling of the materials properties which include the temperature dependency of the heat and electrical conductivity of the graphite parts at temperatures above 2000 °C.


2021 ◽  
pp. 116690
Author(s):  
Abhishek Kumar Pandey ◽  
Niyati Piplani ◽  
Titas Mondal ◽  
Alexandros Katranidis ◽  
Jaydeep Bhattacharya

2019 ◽  
Vol 16 (150) ◽  
pp. 20180626 ◽  
Author(s):  
Nikolay V. Ryzhkov ◽  
Natalya A. Mamchik ◽  
Ekaterina V. Skorb

In situ studies of transmembrane channels often require a model bioinspired artificial lipid bilayer (LB) decoupled from its underlaying support. Obtaining free-standing lipid membranes is still a challenge. In this study, we suggest an electrochemical approach for LB separation from its solid support via hydroquinone oxidation. Layer-by-layer deposition of polyethylenimine (PEI) and polystyrene sulfonate (PSS) on the gold electrode was performed to obtain a polymeric nanocushion of [PEI/PSS] 3 /PEI. The LB was deposited on top of an underlaying polymer support from the dispersion of small unilamellar vesicles due to their electrostatic attraction to the polymer support. Since lipid zwitterions demonstrate pH-dependent charge shifting, the separation distance between the polyelectrolyte support and LB can be adjusted by changing the environmental pH, leading to lipid molecules recharge. The proton generation associated with hydroquinone oxidation was studied using scanning vibrating electrode and scanning ion-selective electrode techniques. Electrochemical impedance spectroscopy is suggested to be a powerful instrument for the in situ observation of processes associated with the LB–solid support interface. Electrochemical spectroscopy highlighted the reversible disappearance of the LB impact on impedance in acidic conditions set by dilute acid addition as well as by electrochemical proton release on the gold electrode due to hydroquinone oxidation.


Sign in / Sign up

Export Citation Format

Share Document