Effects of nitrogen fertilization on soil nutrient concentration and phosphatase activity and forage nutrient uptake from a grazed pasture system

2015 ◽  
Vol 154 ◽  
pp. 208-215 ◽  
Author(s):  
Sandra Leanne Dillard ◽  
Charles Wesley Wood ◽  
Brenda Hall Wood ◽  
Yucheng Feng ◽  
Walter Frank Owsley ◽  
...  
2007 ◽  
Vol 35 (2) ◽  
pp. 253-256
Author(s):  
Milan Biberdžić ◽  
Ivica Đalović ◽  
Aleksandar Paunović ◽  
Ilija Komljenović

1994 ◽  
Vol 42 (3) ◽  
pp. 269 ◽  
Author(s):  
MA Adams ◽  
J Iser ◽  
AD Keleher ◽  
DC Cheal

Analyses of carbon, nitrogen and phosphorus in heathland soils at Wilsons Promontory and on Snake Island show that the effects of fire, including repeated fires, are confined to the surface 2 cm. The uppermost soil in long-unburnt heathlands is rich in these elements and usually has a smaller C:N ratio compared with the soil below. Indices of N and P availability (C:N ratios, concentrations of potentially mineralisable N and extractable inorganic P, phosphatase activity) are similar to those in highly productive eucalypt forests-a finding in conflict with past assessments of nutrient availability in heathlands. Phosphatase activity and concentrations of carbon, nitrogen and potentially mineralisable N were less in soils from repeatedly burnt heathlands than in soils from long unburnt heathlands whereas there was a greater concentration of extractable inorganic P in soils from repeatedly burnt heathlands. The balance between nitrogen input and loss is dependent on fire frequency and present-day management of heathland (and other native plant communities with low nutrient capitals) should recognise that over- or under-use of fire will significantly alter soil nutrient pools and availability and that these changes may alter community species composition and productivity.


Author(s):  
Kamrun Nahar Mousomi ◽  
Mohammad Noor Hossain Miah ◽  
Md. Abul Kashem ◽  
Imtiaz Miah

A pot experiment was conducted at the experimental net house of the Department of Soil Science, Sylhet Agricultural University, Sylhet, Bangladesh to observe the effect of fertilizers on yield and nutrient uptake of local aromatic rice varieties during the Aman season of 2015. The experiment was laid out in a Randomized Complete Block Design with three replications. Five local aromatic rice varieties (Kalizira: V1, Muktasail: V2, Nagrasail: V3, Maloti: V4 and Chinigura: V5) and four packages of fertilizers (F1:  Recommended package i.e. 45-10-20-10-0.5 kg ha-1 of N-P-K-S-Zn, F2: 2/3rd of recommended package, F3: 1/3rd of recommended package, and F4: Control) were used. Urea, TSP, MoP, gypsum and ZnSO4 were used as N, P, K, S and Zn source, respectively. According to the treatment, all fertilizers were applied as basal during final pot preparation while urea was applied in two equal splits (one half as basal and another half at 40 DAT). Nutrient content and uptake of the aromatic rice varieties were significantly affected by the application of different fertilizer packages (with few exceptions). Mostly Kalizira (1.10-0.44-2.31-0.67-13.75 g pot-1 of N-P-K-S-Zn) and/or Nagrasail (1.15-0.46-2.70-0.62-11.74 g pot-1 of N-P-K-S-Zn) varieties showed the highest nutrient uptake in grain and straw with recommended package of fertilizers. While in maximum cases Chinigura (0.41-0.16-0.76-0.197-3.17 g pot-1 of N-P-K-S-Zn) was observed to have the lowest with control treatment. In case of post harvest soil nutrient analyses, Kalizira and/or Chinigura variety associated with recommended package of fertilizers showed the highest nutrient status.


Processes ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 1681
Author(s):  
Aaronn Avit Ajeng ◽  
Rosazlin Abdullah ◽  
Marlinda Abdul Malek ◽  
Kit Wayne Chew ◽  
Yeek-Chia Ho ◽  
...  

The full dependency on chemical fertilizers in oil palm plantation poses an enormous threat to the ecosystem through the degradation of soil and water quality through leaching to the groundwater and contaminating the river. A greenhouse study was conducted to test the effect of combinations of biofertilizers with chemical fertilizer focusing on the soil fertility, nutrient uptake, and the growth performance of oil palms seedlings. Soils used were histosol, spodosol, oxisol, and ultisol. The three treatments were T1: 100% chemical fertilizer (NPK 12:12:17), T2: 70% chemical fertilizer + 30% biofertilizer A (CF + BFA), and T3: 70% + 30% biofertilizer B (CF + BFB). T2 and T3, respectively increased the growth of oil palm seedlings and soil nutrient status but seedlings in oxisol and ultisol under T3 had the highest in almost all parameters due to the abundance of more efficient PGPR. The height of seedlings in ultisol under T3 was 22% and 17% more than T2 and T1 respectively, with enhanced girth size, chlorophyll content, with improved nutrient uptake by the seedlings. Histosol across all treatments has a high macronutrient content suggesting that the rate of chemical fertilizer application should be revised when planting using the particular soil. With the reduction of chemical fertilizer by 25%, the combined treatment with biofertilizers could enhance the growth of the oil palm seedlings and soil nutrient properties regardless of the soil orders.


cftm ◽  
2017 ◽  
Vol 3 (1) ◽  
pp. cftm2017.04.0029 ◽  
Author(s):  
J.K. Yarborough ◽  
J.M.B. Vendramini ◽  
M.L.A. Silveira ◽  
L.E. Sollenberger ◽  
R.G. Leon ◽  
...  

2006 ◽  
Vol 86 (4) ◽  
pp. 655-673 ◽  
Author(s):  
N B Comerford ◽  
W P Cropper, Jr. ◽  
Hua Li ◽  
P J Smethurst ◽  
K. C.J. Van Rees ◽  
...  

Models of soil nutrient bioavailability and uptake assist in nutrient management and lead to a better understanding of nutrient dynamics in the soil-plant system. SSAND (Soil Supply and Nutrient Demand) is a steady state, mechanistic nutrient uptake simulation model based on mass flow and diffusive supply of nutrients to roots. It requires user inputs for soil and plant parameters to calculate a nutrient’s concentration at the root surface and the subsequent uptake by a plant root and/or extrametrical mycorrhizal hyphae. It can be considered a sub-model linked to hydrological or plant growth models. SSAND provides a basis for simulating nutrient uptake under different soil-plant scenarios, including multiple soil compartments, net mineralization inputs, changing root growth, changing mycorrhizal hyphae growth, changing soil water content and multiple fertilizer events. It incorporates uptake from roots and mycorrhizal hyphae, including the potential competition between these entities. It should be useful for simulating the effects of climate change on soil nutrient bioavailability. It should also be a useful tool for managers in evaluating fertilizer regime options. Key words: Nutrient bioavailability, nutrient uptake modeling, phosphorus uptake, mycorrhizae, Spodosols, climate change


Sign in / Sign up

Export Citation Format

Share Document