Growth limitation status and its role in interpreting chlorophyll a response in large and shallow lakes: A case study in Lake Okeechobee

2022 ◽  
Vol 302 ◽  
pp. 114071
Author(s):  
Tao Xu ◽  
Tao Yang ◽  
Xin Zheng ◽  
Zhenya Li ◽  
Youwei Qin
2010 ◽  
Vol 67 (8) ◽  
pp. 1291-1302 ◽  
Author(s):  
Helder Cunha Pereira ◽  
Norman Allott ◽  
Catherine Coxon

This paper compares, for the first time, nutrient levels and chlorophyll a measured in a set of seasonal lakes with those reported for permanent lakes in the literature. Twenty-two turloughs (karstic seasonal lakes) in western Ireland were sampled monthly from the onset of flooding (October) until they dried out (6 to 9 months). The turloughs showed similar levels of nutrients and chlorophyll a to those reported for Irish and international lakes. Chlorophyll a peaked between November and February in the majority of turloughs, sometimes with values higher than those measured in mesotrophic lakes in summer. A significant log-linear regression was found between total phosphorus and chlorophyll a, which suggests P limitation of algal biomass in the majority of the turloughs. The regression characteristics were not significantly different than those described in similar studies of permanent lakes. Patterns in seasonal variation of nutrients are also presented, their underlying causes being discussed in relation to their transport within catchments. Our results show that despite being predominantly winter phenomena, turloughs can be as productive as permanent lakes.


Limnologica ◽  
2004 ◽  
Vol 34 (1-2) ◽  
pp. 65-74 ◽  
Author(s):  
Selim M. Sayah ◽  
Jean-Louis Boillat ◽  
Anton Schleiss

Ecosystems ◽  
2007 ◽  
Vol 10 (1) ◽  
pp. 4-16 ◽  
Author(s):  
Bas W. Ibelings ◽  
Rob Portielje ◽  
Eddy H. R. R. Lammens ◽  
Ruurd Noordhuis ◽  
Marcel S. van den Berg ◽  
...  

2011 ◽  
Vol 6 (2) ◽  
pp. 024023 ◽  
Author(s):  
Anatoly A Gitelson ◽  
Bo-Cai Gao ◽  
Rong-Rong Li ◽  
Sergey Berdnikov ◽  
Vladislav Saprygin

2018 ◽  
Author(s):  
Ketut Wikantika

According to UNCLOS, Indonesian marine territorial covers an area equal to around 2.8 million square kilometers inner archipelagic seas. Though the Indonesian water region is very wide, the resource within it is not yet been exploited optimally. Indonesia still has problems that have to be copped with, including identification of marine fishing ground areas. This report proposes a technology to make the fish-catching be more efficient and effective with the help of MODIS satellite image in term of Surface Temperature and chlorophyll-a computation. Data conversion from digital number to Water Brightness Temperature are performed. The determination of potential fishing ground area were conducted based on temperature and chlorophyll-a parameters which serve as an indicator of upwelling and observations were carried out on parameters which show this phenomenon. Based on the result, during May 2004 the upwelling process were not happened yet, and it seems to occur in June 2004. It showes by the decreasing of water temperature in South Coast of West Java particularly between the border of West Java and Central of Java. This phenomenon acts as an indicator for the raising of primer productivity and will takes about one month after upwelling to the bloom of phytoplankton.


Hydrobiologia ◽  
1991 ◽  
Vol 215 (2) ◽  
pp. 111-119 ◽  
Author(s):  
Lajos Vörös ◽  
Judit Padisák

Sign in / Sign up

Export Citation Format

Share Document