Plant induced changes in concentrations of caesium, strontium and uranium in soil solution with reference to major ions and dissolved organic matter

2008 ◽  
Vol 99 (6) ◽  
pp. 900-911 ◽  
Author(s):  
Akira Takeda ◽  
Hirofumi Tsukada ◽  
Yuichi Takaku ◽  
Naofumi Akata ◽  
Shun'ichi Hisamatsu
2013 ◽  
Vol 10 (3) ◽  
pp. 1365-1377 ◽  
Author(s):  
M. O. Rappe-George ◽  
A. I. Gärdenäs ◽  
D. B. Kleja

Abstract. Addition of mineral nitrogen (N) can alter the concentration and quality of dissolved organic matter (DOM) in forest soils. The aim of this study was to assess the effect of long-term mineral N addition on soil solution concentration of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in Stråsan experimental forest (Norway spruce) in central Sweden. N was added yearly at two levels of intensity and duration: the N1 treatment represented a lower intensity but a longer duration (43 yr) of N addition than the shorter N2 treatment (24 yr). N additions were terminated in the N2 treatment in 1991. The N treatments began in 1967 when the spruce stands were 9 yr old. Soil solution in the forest floor O, and soil mineral B, horizons were sampled during the growing seasons of 1995 and 2009. Tension and non-tension lysimeters were installed in the O horizon (n = 6), and tension lysimeters were installed in the underlying B horizon (n = 4): soil solution was sampled at two-week intervals. Although tree growth and O horizon carbon (C) and N stock increased in treatments N1 and N2, the concentration of DOC in O horizon leachates was similar in both N treatments and control. This suggests an inhibitory direct effect of N addition on O horizon DOC. Elevated DON and nitrate in O horizon leachates in the ongoing N1 treatment indicated a move towards N saturation. In B horizon leachates, the N1 treatment approximately doubled leachate concentrations of DOC and DON. DON returned to control levels, but DOC remained elevated in B horizon leachates in N2 plots nineteen years after termination of N addition. We propose three possible explanations for the increased DOC in mineral soil: (i) the result of decomposition of a larger amount of root litter, either directly producing DOC or (ii) indirectly via priming of old SOM, and/or (iii) a suppression of extracellular oxidative enzymes.


2021 ◽  
Vol 753 ◽  
pp. 141768
Author(s):  
Yongkun K. Wang ◽  
Xiaoyan Y. Ma ◽  
Shiying Zhang ◽  
Lei Tang ◽  
Hengfeng Zhang ◽  
...  

2014 ◽  
Vol 66 ◽  
pp. 14-24 ◽  
Author(s):  
Svetlana M. Ilina ◽  
Olga Yu. Drozdova ◽  
Sergey A. Lapitskiy ◽  
Yuriy V. Alekhin ◽  
Vladimir V. Demin ◽  
...  

2014 ◽  
Vol 66 ◽  
pp. 140-148 ◽  
Author(s):  
Xi-Zhi Niu ◽  
Chao Liu ◽  
Leo Gutierrez ◽  
Jean-Philippe Croué

2012 ◽  
Vol 84 ◽  
pp. 256-268 ◽  
Author(s):  
Matthieu N. Bravin ◽  
Cédric Garnier ◽  
Véronique Lenoble ◽  
Frédéric Gérard ◽  
Yves Dudal ◽  
...  

2015 ◽  
Vol 12 (7) ◽  
pp. 5697-5723 ◽  
Author(s):  
M. C. Hernandez-Soriano ◽  
J. C. Jimenez-Lopez

Abstract. The bioavailability of metals in soil is only partially explained by their partition among the solid and aqueous phase and is more related to the characterization of their speciation in the soil solution. The organic ligands in solution that largely determine metal speciation involve complex mixtures and the characterization of fluorescence components of dissolved organic matter (DOM) can identify pools of molecules that participate in metal speciation, this being essential for risk assessment. The bioavailability of Cd, Cu, Pb and Zn in three agricultural soils was examined in the laboratory to recreate irrigation with greywater enriched in anionic surfactants (Aerosol 22 and Biopower). Field capacity and saturation regimes were considered for this study. Irrigation with aqueous solutions of the anionic surfactants increased total DOM concentrations and metals in the soil solution (Pb > Cu > Zn > Cd). Significant correlation (p < 0.05) between the readily available pool of metals with the concentration of DOM was determined for Cu (r = 0.67), Pb (r = 0.82) and Zn (r = 0.68). However, speciation analysis performed with the software WHAM indicated that mobilisation of DOM and metals into the soluble phase resulted in a low concentration of free ion activities and promoted the formation of metal-organo complexes. The characterization of fluorescence components revealed that DOM in soil solution from soils irrigated with Aerosol 22 was enriched in a reduced quinone-like and a humic-like component. Besides, fluorescence quenching provided further evidence of metal complexation with organic ligands in solution. Hence, metal mobilization in soil irrigated with surfactant enriched greywater occurs with solubilisation of high affinity organic ligands, which substantially decreases the potential risk of metal toxicity.


Sign in / Sign up

Export Citation Format

Share Document