n saturation
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 3)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1798
Author(s):  
Piaopiao Ke ◽  
Gaoyue Si ◽  
Yao Luo ◽  
Zhenglin Cheng ◽  
Qian Yu ◽  
...  

Anthropogenic emissions of nitrogen- (N) and sulfur (S)-containing pollutants have declined across China in recent years. However, the responses of N and S depositions and dynamics in soil remain unclear in subtropical forests. In this study, the wet and throughfall depositions of dissolved inorganic N (DIN) and SO42− were continuously monitored in a mildly polluted subtropical forest in Southeast China in 2017 and 2018. Moreover, these solutes in soil water along the soil profile were monitored in 2018. Throughfall deposition of DIN and S decreased by 59% and 53% in recent 3 years, respectively, which can be majorly attributed to the decreases in wet depositions of NO3− and SO42−. Meanwhile, NH4+ deposition remained relatively stable at this site. Even though N deposition in 2018 was below the N saturation threshold for subtropical forests, significant N leaching still occurred. Excess export of N occurred in the upper soil layer (0–15 cm), reaching 6.86 ± 1.54 kg N/ha/yr, while the deeper soil (15–30 cm) was net sink of N as 8.29 ± 1.71 kg N/ha/yr. Similarly, S was excessively exported from the upper soil with net flux of 14.7 ± 3.15 kg S/ha/yr, while up to 6.37 ± 3.18 kg S/ha/yr of S was retained in the deeper soil. The significant N and S leaching under declined depositions suggested that this site possibly underwent a transition state, recovering from historically high acid deposition. Furthermore, the rainfall intensity remarkably regulated leaching and retention of SO42− and DIN at this site. The impacts of climate changes on N and S dynamics require further long-term monitoring in subtropical forests.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hao Chen ◽  
Junjie Tang ◽  
Xibin Sun ◽  
Kayan Ma ◽  
Huaihai Chen ◽  
...  

Abstract Background Nitrogen (N) saturation theory proposes that an ecosystem might switch from N limitation to carbon (C), phosphorus (P), or other nutrient limitations if it receives continuous N input. Yet, after N limitation is removed, which nutrient is the most limited and whether topography modulates such change is rarely tested at a microbial level. Here, we conducted a two-year N addition experiment under two different topography positions (i.e. a slope and a valley) in a N-saturated subtropical forest. Soil enzyme activity was measured, and ecoenzymatic stoichiometry indexes were calculated as indicators of microbial resource limitation. Results In the valley, two-year N addition changed the activity of all studied enzymes to various degrees. As a result, microbial C limitation was aggravated in the valley, and consequently microbial decomposition of soil labile organic C increased, but microbial P limitation was alleviated due to the stoichiometry balance. On the slope, however, N addition did not significantly change the activity of the studied enzymes, and did not alter the status of microbial resource limitation. Conclusions These results indicate that C is a more limited element for microbial growth than P after removing N limitation, but we also highlight that topography can regulate the effect of N deposition on soil microbial resource limitation in subtropical forests. These findings provide useful supplements to the N saturation theory.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 803
Author(s):  
Qinggong Mao ◽  
Hao Chen ◽  
Cong Wang ◽  
Zongqing Pang ◽  
Jiangming Mo ◽  
...  

Humid tropical forests are commonly characterized as N-rich but P-deficient. Increased N deposition may drive N saturation and aggravate P limitation in tropical forests. Thus, P addition is proposed to mitigate the negative effects of N deposition by stimulating N cycling. However, little is known regarding the effect of altered N and P supply on the nutrient status of understory plants in tropical forests, which is critical for predicting the consequences of disturbed nutrient cycles. We assessed the responses of N concentration, P concentration, and N:P ratios of seven understory species to N and P addition in an 8-year fertilization experiment in a primary forest in south China. The results showed that N addition had no effect on plant N concentration, P concentration, and N:P ratios for most species. In contrast, P addition significantly increased P concentration, and decreased N:P ratios but had no effect on plant N concentration. The magnitude of P concentration responses to P addition largely depended on the types of organs and species. The increased P was more concentrated in the fine roots and branches than in the leaves. The gymnospermous liana Gnetum montanum Markgr. had particularly lower foliar N: P (~9.8) and was much more responsive to P addition than the other species studied. These results indicate that most plants are saturated in N but have great potential to restore P in primary tropical forests. N deposition does not necessarily aggravate plant P deficiency, and P addition does not increase the retention of deposited N by increasing the N concentration. In the long term, P inputs may alter the community composition in tropical forests owing to species-specific responses.


2021 ◽  
Vol 8 ◽  
Author(s):  
Nghia Tuan Duong ◽  
Zhehong Gan ◽  
Yusuke Nishiyama

Accurate distance measurements between proton and nitrogen can provide detailed information on the structures and dynamics of various molecules. The combination of broadband phase-modulated (PM) pulse and rotational-echo saturation-pulse double-resonance (RESPDOR) sequence at fast magic-angle spinning (MAS) has enabled the measurement of multiple 1H-14N distances with high accuracy. However, complications may arise when applying this sequence to systems with multiple inequivalent 14N nuclei, especially a single 1H sitting close to multiple 14N atoms. Due to its broadband characteristics, the PM pulse saturates all 14N atoms; hence, the single 1H simultaneously experiences the RESPDOR effect from multiple 1H-14N couplings. Consequently, no reliable H-N distances are obtained. To overcome the problem, selective 14N saturation is desired, but it is difficult because 14N is an integer quadrupolar nucleus. Alternatively, 14N overtone (OT) NMR spectroscopy can be employed owing to its narrow bandwidth for selectivity. Moreover, owing to the sole presence of two energy levels (m = ± 1), the 14N OT spin dynamics behaves similarly to that of spin-1/2. This allows the interchangeability between RESPDOR and rotational-echo double-resonance (REDOR) since their principles are the same except the degree of 14N OT population transfer; saturation for the former whereas inversion for the latter. As the ideal saturation/inversion is impractical due to the slow and orientation-dependent effective nutation of 14N OT, the working condition is usually an intermediate between REDOR and RESPDOR. The degree of 14N OT population transfer can be determined from the results of protons with short distances to 14N and then can be used to obtain long-distance determination of other protons to the same 14N site. Herein, we combine the 14N OT and REDOR/RESPDOR to explore the feasibility of selective 1H-14N distance measurements. Experimental demonstrations on simple biological compounds of L-tyrosine.HCl, N-acetyl-L-alanine, and L-alanyl-L-alanine were performed at 14.1 T and MAS frequency of 62.5 kHz. The former two consist of a single 14N site, whereas the latter consists of two 14N sites. The experimental optimizations and reliable fittings by the universal curves are described. The extracted 1H-14N distances by OT-REDOR are in good agreement with those determined by PM-RESPDOR and diffraction techniques.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 298
Author(s):  
Klas Lucander ◽  
Giuliana Zanchi ◽  
Cecilia Akselsson ◽  
Salim Belyazid

Nitrogen (N) fertilization in forests has the potential to increase tree growth and carbon (C) sequestration, but it also means a risk of N leaching. Dynamic models can, if the important processes are well described, play an important role in assessing benefits and risks of nitrogen fertilization. The aim of this study was to test if the ForSAFE model is able to simulate correctly the effects of N fertilization when considering different levels of N availability in the forest. The model was applied for three sites in Sweden, representing low, medium and high nitrogen deposition. Simulations were performed for scenarios with and without fertilization. The effect of N fertilization on tree growth was largest at the low deposition site, whereas the effect on N leaching was more pronounced at the high deposition site. For soil organic carbon (SOC) the effects were generally small, but in the second forest rotation SOC was slightly higher after fertilization, especially at the low deposition site. The ForSAFE simulations largely confirm the N saturation theory which state that N will not be retained in the forest when the ecosystem is N saturated, and we conclude that the model can be a useful tool in assessing effects of N fertilization.


2020 ◽  
Vol 17 (6) ◽  
pp. 1583-1620 ◽  
Author(s):  
Chris R. Flechard ◽  
Andreas Ibrom ◽  
Ute M. Skiba ◽  
Wim de Vries ◽  
Marcel van Oijen ◽  
...  

Abstract. The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilized, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC∕dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2020) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes; soil NO3- leaching sampling; and results of soil incubation experiments for N and greenhouse gas (GHG) emissions, as well as surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from −70 to 826 g C m−2 yr−1 at total wet + dry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 g N m−2 yr−1 and from −4 to 361 g C m−2 yr−1 at Ndep rates of 0.1 to 3.1 g N m−2 yr−1 in short semi-natural vegetation (moorlands, wetlands and unfertilized extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Uncertainties in elemental budgets were much larger for nitrogen than carbon, especially at sites with elevated Ndep where Nr leaching losses were also very large, and compounded by the lack of reliable data on organic nitrogen and N2 losses by denitrification. Nitrogen losses in the form of NO, N2O and especially NO3- were on average 27 % (range 6 %–54 %) of Ndep at sites with Ndep < 1 g N m−2 yr−1 versus 65 % (range 35 %–85 %) for Ndep > 3 g N m−2 yr−1. Such large levels of Nr loss likely indicate that different stages of N saturation occurred at a number of sites. The joint analysis of the C and N budgets provided further hints that N saturation could be detected in altered patterns of forest growth. Net ecosystem productivity increased with Nr deposition up to 2–2.5 g N m−2 yr−1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP ∕ GPP ratio). At elevated Ndep levels (> 2.5 g N m−2 yr−1), where inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC∕dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep.


2020 ◽  
Author(s):  
Yu-Lin Yu ◽  
Jr-Chuan Huang ◽  
Ting-Chang Hsu ◽  
Teng-Chiu Lin

&lt;p&gt;Although global models of nitrogen (N) cycling typically focus on nitrate of ecosystem N saturation, dissolved organic nitrogen (DON) is the dominant form of nitrogen export from many watersheds. In previous hypotheses, DON dynamics in the watersheds was treated as being functionally equivalent to inorganic N forms. However, unlike inorganic N, the dynamics of N contained within organic molecules is controlled not only by direct biological demand for N, but also by heterotrophic demand for the reduced C, to which N is attached. During 2016-2018, we evaluated the DON release hypothesis and the passive carbon vehicle hypothesis by comparing streamwater DON, DOC, and DIN concentrations across Fushan experimental forested watershed in the northeast Taiwan. We found that (1) the export of the Fushan Experimental Forest (FEF) is N saturated and (2) the altering nature of the DON release hypothesis and passive carbon vehicle hypothesis between non-event days and typhoon events. Results show that DON concentrations change systematically with increasing nitrate concentrations in all surveys. Among which, DON concentration correlates negatively with nitrate concentration in non-event days but positively during typhoon events. Our results support the coupling between DIN, DON, and DOC concentrations in forested watersheds that are subject to high rates of anthropogenic N loading. In non-event days, the N-containing dissolved organic matter may be in a labile form of carbon. Thus, alleviating heterotrophic N limitation may result in a decrease in DON export (passive carbon vehicle hypothesis), while during typhoon events, DON losses increase as demand for labile N forms attenuates (DON release hypothesis). These hypotheses are not mutually exclusive but represent the potentially contrasting roles of DON within C and N cycles. Our study suggests that bioavailability assays and addition experiments will present variations in the direct biological demand for N and heterotrophic demand for the reduced C, which is informative and necessary for characterizing the processes controlling DON export.&lt;br&gt;&lt;br&gt;&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Keywords:&lt;/strong&gt; DON, DIN, N saturation, DON release hypothesis, passive carbon vehicle hypothesis&lt;/p&gt;


2020 ◽  
Author(s):  
Yongmei Huang

&lt;p&gt;Effect of nitrogen deposition on terrestrial ecosystems are one of the hot spots in the study of global change, and the significantly different responses were reported widely among different ecosystems. In this study, field simulated nitrogen deposition experiment was carried out in a temperate steppe, norther China from 2011 to 2018. Treatments were designed as: CK (0 g N/m&lt;sup&gt;2&lt;/sup&gt;), N2 level (2 g N/m&lt;sup&gt;2&lt;/sup&gt;), N5 level (5 g N/m&lt;sup&gt;2&lt;/sup&gt;), N10 level (10 g N/m&lt;sup&gt;2&lt;/sup&gt;), N25 level (25 g N/m&lt;sup&gt;2&lt;/sup&gt;) and N50 level (50 g N/m&lt;sup&gt;2&lt;/sup&gt;). The results showed that the N addition did not cause a noticeable change in the net primary productivity and soil acidification. N addition caused a significant decline in community biodiversity with a major shift in species composition. N utilization strategy, photosynthetic capacity, and water use efficiency of three dominant species behaved differently under N deposition. Soil was the major sink for N deposition testified by the &lt;sup&gt;15&lt;/sup&gt;N isotope tracer experiment. N addition decreased soil microorganism and plant &lt;sup&gt;15&lt;/sup&gt;N recovery and increased soil of 30-40 cm layer &lt;sup&gt;15&lt;/sup&gt;N recovery. N saturation of the temperature steppe would occur when N deposition rate reached 5.4-8.4gN m&lt;sup&gt;-2&lt;/sup&gt;a&lt;sup&gt;-1&lt;/sup&gt;.&lt;/p&gt;


Plant Biology ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 394-403 ◽  
Author(s):  
G. Gaudig ◽  
M. Krebs ◽  
H. Joosten

2019 ◽  
Author(s):  
Chris R. Flechard ◽  
Andreas Ibrom ◽  
Ute M. Skiba ◽  
Wim de Vries ◽  
Marcel van Oijen ◽  
...  

Abstract. The impact of atmospheric reactive nitrogen (Nr) deposition on carbon (C) sequestration in soils and biomass of unfertilised, natural, semi-natural and forest ecosystems has been much debated. Many previous results of this dC / dN response were based on changes in carbon stocks from periodical soil and ecosystem inventories, associated with estimates of Nr deposition obtained from large-scale chemical transport models. This study and a companion paper (Flechard et al., 2019) strive to reduce uncertainties of N effects on C sequestration by linking multi-annual gross and net ecosystem productivity estimates from 40 eddy covariance flux towers across Europe to local measurement-based estimates of dry and wet Nr deposition from a dedicated collocated monitoring network. To identify possible ecological drivers and processes affecting the interplay between C and Nr inputs and losses, these data were also combined with in situ flux measurements of NO, N2O and CH4 fluxes, soil NO3− leaching sampling, as well as results of soil incubation experiments for N and greenhouse gas (GHG) emissions, surveys of available data from online databases and from the literature, together with forest ecosystem (BASFOR) modelling. Multi-year averages of net ecosystem productivity (NEP) in forests ranged from −70 to 826 g (C) m−2 yr−1 at total wet + dry inorganic Nr deposition rates (Ndep) of 0.3 to 4.3 g (N) m−2 yr−1; and from −4 to 361 g (C) m−2 yr−1 at Ndep rates of 0.1 to 3.1 g (N) m−2 yr−1 in short semi-natural vegetation (moorlands, wetlands and unfertilised extensively managed grasslands). The GHG budgets of the forests were strongly dominated by CO2 exchange, while CH4 and N2O exchange comprised a larger proportion of the GHG balance in short semi-natural vegetation. Nitrogen losses in the form of NO, N2O and especially NO3− were of the order of 10–20 % of Ndep at sites with Ndep  3 g (N) m−2 yr−1, indicating that perhaps one third of the sites were in a state of early to advanced N saturation. Net ecosystem productivity increased with Nr deposition up to 2–2.5 g (N) m−2 yr−1, with large scatter associated with a wide range in carbon sequestration efficiency (CSE, defined as the NEP / GPP ratio). At elevated Ndep levels (> 2.5 g (N) m−2 yr−1), where inorganic Nr losses were also increasingly large, NEP levelled off and then decreased. The apparent increase in NEP at low to intermediate Ndep levels was partly the result of geographical cross-correlations between Ndep and climate, indicating that the actual mean dC / dN response at individual sites was significantly lower than would be suggested by a simple, straightforward regression of NEP vs. Ndep.


Sign in / Sign up

Export Citation Format

Share Document