SAUNA field - A sensitive system for analysis of radioxenon in soil gas samples

2021 ◽  
Vol 240 ◽  
pp. 106761
Author(s):  
Mattias Aldener ◽  
Anders Axelsson ◽  
Klas Elmgren ◽  
Tomas Fritioff ◽  
Johan Kastlander ◽  
...  
Keyword(s):  
2005 ◽  
Vol 33 (1) ◽  
pp. 373-376 ◽  
Author(s):  
Péter Hegymegi ◽  
Anita Gál ◽  
Imre Czinkota ◽  
Tony Vyn
Keyword(s):  
Soil Gas ◽  

1992 ◽  
Vol 21 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Nic Korte ◽  
Sandra Wagner ◽  
Jon Nyquist

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 443
Author(s):  
Camille Rousset ◽  
Timothy J. Clough ◽  
Peter R. Grace ◽  
David W. Rowlings ◽  
Clemens Scheer

Pastures require year-round access to water and in some locations rely on irrigation during dry periods. Currently, there is a dearth of knowledge about the potential for using irrigation to mitigate N2O emissions. This study aimed to mitigate N2O losses from intensely managed pastures by adjusting irrigation frequency using soil gas diffusivity (Dp/Do) thresholds. Two irrigation regimes were compared; a standard irrigation treatment based on farmer practice (15 mm applied every 3 days) versus an optimised irrigation treatment where irrigation was applied when soil Dp/Do was ≈0.033 (equivalent to 50% of plant available water). Cow urine was applied at a rate of 700 kg N ha−1 to simulate a ruminant urine deposition event. In addition to N2O fluxes, soil moisture content was monitored hourly, Dp/Do was modelled, and pasture dry matter production was measured. Standard irrigation practices resulted in higher (p = 0.09) cumulative N2O emissions than the optimised irrigation treatment. Pasture growth rates under treatments did not differ. Denitrification during re-wetting events (irrigation and rain) contributed to soil N2O emissions. These results warrant further modelling of irrigation management as a mitigation option for N2O emissions from pasture soils, based on Dp/Do thresholds, rainfall, plant water demands and evapotranspiration.


Author(s):  
Qixiang Zhang ◽  
Qiyan Feng ◽  
Xueqiang Zhu ◽  
Mei Zhang ◽  
Yanjun Wang ◽  
...  

In order to describe the changes of soil temperature field, air flow field and remediation situation with time during the process of thermally enhanced SVE (soil vapor extraction), a remediation experiment of benzene contaminated soil with single extraction pipe was carried out in a box device. The results showed that the whole temperature of the system was raised to 80 °C in 4 h. 43% of benzene were removed in the first 2% of the extraction time. After 24 h, the repair efficiency was close to 100%. The device can efficiently remove benzene from soil. By continuously monitoring the parameters in the operation process of the system, the spatial distribution of temperature and soil gas pollutant concentration with time was plotted. It showed the benzene concentration distribution in the soil gas was more consistent with the temperature distribution before the start of ventilation, and the concentration of benzene in the soil gas dropped rapidly after ventilation, while the temperature distribution was almost unaffected. In the treatment of soil with a benzene content of 17.8 mg∙kg−1, when the soil gas benzene concentration is the highest at 180 min, the peak value is 11,200 mg∙m−3, and the average concentration is 7629.4 mg∙m−3.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joseph R. Roscioli ◽  
Laura K. Meredith ◽  
Joanne H. Shorter ◽  
Juliana Gil-Loaiza ◽  
Till H. M. Volkmann

AbstractSoil microbes vigorously produce and consume gases that reflect active soil biogeochemical processes. Soil gas measurements are therefore a powerful tool to monitor microbial activity. Yet, the majority of soil gases lack non-disruptive subsurface measurement methods at spatiotemporal scales relevant to microbial processes and soil structure. To address this need, we developed a soil gas sampling system that uses novel diffusive soil probes and sample transfer approaches for high-resolution sampling from discrete subsurface regions. Probe sampling requires transferring soil gas samples to above-ground gas analyzers where concentrations and isotopologues are measured. Obtaining representative soil gas samples has historically required balancing disruption to soil gas composition with measurement frequency and analyzer volume demand. These considerations have limited attempts to quantify trace gas spatial concentration gradients and heterogeneity at scales relevant to the soil microbiome. Here, we describe our new flexible diffusive probe sampling system integrated with a modified, reduced volume trace gas analyzer and demonstrate its application for subsurface monitoring of biogeochemical cycling of nitrous oxide (N2O) and its site-specific isotopologues, methane, carbon dioxide, and nitric oxide in controlled soil columns. The sampling system observed reproducible responses of soil gas concentrations to manipulations of soil nutrients and redox state, providing a new window into the microbial response to these key environmental forcings. Using site-specific N2O isotopologues as indicators of microbial processes, we constrain the dynamics of in situ microbial activity. Unlocking trace gas messengers of microbial activity will complement -omics approaches, challenge subsurface models, and improve understanding of soil heterogeneity to disentangle interactive processes in the subsurface biome.


Sign in / Sign up

Export Citation Format

Share Document