scholarly journals Numerical and experimental analysis of heat and mass transfer in the drying process of the solar drying system

Author(s):  
Mehmet Daş ◽  
Erdem Alıç ◽  
Ebru Kavak Akpinar
Author(s):  
Clement A. Komolafe ◽  
M. Adekojo Waheed ◽  
Chidozie Ezekwem ◽  
Ching-Lik Hii

Abstract This study investigated the numerical analysis of heat and mass transfer during solar drying of cocoa beans with firebrick thermal storage material (FTSM). The continuity, momentum, energy, and species equations were solved for a three-dimensional ellipsoidal cocoa-bean using the Finite Volume Method with the aid of ANSYS, a Computational Fluid Dynamics software. The simulated and experimental maximum product (Cocoa) temperatures of 53 and 53.5 °C respectively were in agreement with each other. The results obtained in this study will help the stakeholders in the cooa processing industries in the design of the drying system, selection of suitable drying conditions, and prediction of heat and mass transfer in the drying process of cocoa, enhancement of better quality attributes such as colour and flavour, reduction in the cost of design and time in the drying process.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06201
Author(s):  
Alamrew B. Solomon ◽  
Solomon W. Fanta ◽  
Mulugeta A. Delele ◽  
Maarten Vanierschot

2014 ◽  
Vol 541-542 ◽  
pp. 722-726
Author(s):  
Jun Ming Hou ◽  
De Xu Yang ◽  
Ke Jia Wu

In this paper the drying process of ginkgo biloba is discussed. The process combined effect of convective Heat and mass transfer on hydromagnetic electrically conducting viscous, how to improve the ability of drying is an important problem. The heat transmission for drying process is discussed. The parameter of drying process is determined. The ginkgo biloba drying machine is developed and the key part of drying machine is designed. The whole drying machine is developed, which can enhance the ability of medical industry. The study can help the Optimization of drying process and the level of the ginkgo biloba drying.


2020 ◽  
Vol 6 (2) ◽  
pp. 81-87
Author(s):  
Zhanna Petrova ◽  
◽  
Kateryna Samoilenko ◽  
Vitaly Vishnevsky

Red beetroot is the main raw material which has a high content of betanine with antioxidant properties. An important emphasis in the processing of antioxidant raw materials by drying is to reduce energy consumption for the dehydration process, the maximum preservation of biologically active substances, and to reduce the cost of the final product. Drying is a complex and energy-intensive process. Therefore, to optimize energy consumption during drying and selection of rational modes of dehydration, it is necessary to apply the calculated analysis of heat and mass transfer on the basis of adequate mathematical models. Calculated and experimental results are compared. In general, the comparison of the results of numerical modeling of convection drying processes of the red beetroot sample with the experimental results showed their rather satisfactory qualitative agreement. The calculation model can be used to approximate the characteristics of the drying process of red beetroot, in particular the time required for drying. The obtained results of calorimetric studies allow stating that with correctly selected compositions, not only the components of native raw materials are stabilized, but also the drying process is intensified with the reduction of energy consumption to process.


Author(s):  
You-Rong Li ◽  
Dan-Ling Zeng

Based on non-equilibrium thermodynamic theory and combined with the conservation laws, a comprehensive theoretical model was established to describe heat and mass transfer during convective drying process, and numerical calculation was performed. The results show that: (a) the external convective heat and mass transfer may be treated as the conductive heat transfer with internal heat source and the molecular mass diffusion with internal mass source, respectively, and the ability of heat and mass transfer mainly depends on the strength of the heat source and mass source; the higher the temperature of the drying media, the lower the strength of the internal heat source, but the higher that of the internal mass sources; (b) the evaporation of internal water takes place inside the whole material, and the molecular mass diffusion of the internal vapor is in the direction of decreasing mass transfer potential, not along the decreasing partial pressure of vapor.


2020 ◽  
Author(s):  
Eflita Yohana ◽  
Nazaruddin Sinaga ◽  
Haryo Pachusadewo ◽  
M. Irfan Nugraha ◽  
M. Endy Yulianto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document