Control of pore channel size during freeze casting of porous YSZ ceramics with unidirectionally aligned channels using different freezing temperatures

2010 ◽  
Vol 30 (16) ◽  
pp. 3389-3396 ◽  
Author(s):  
Liangfa Hu ◽  
Chang-An Wang ◽  
Yong Huang ◽  
Chencheng Sun ◽  
Sheng Lu ◽  
...  
Author(s):  
Halil Tetik ◽  
Dong Lin

Abstract 3D freeze printing is a hybrid manufacturing method composed of freeze casting and inkjet-based printing. It is a facile method to fabricate lightweight, porous, and functional structures. Freeze casting is a well-known method for fabricating porous bodies and is capable of manipulating the micro-structure of the resulting product. Freeze casting simply involves solidification of a liquid suspension using low temperature and sublimation of the solvent using low temperature and pressure. After the sublimation of the solvent crystals, we obtain a porous structure where the pores are a replica of solvent crystal. Making use of the temperature gradient, as seen in unidirectional and bidirectional freeze casting, during the solidification with low temperature values, the solvent crystals grow along the temperature gradient. Furthermore, by manipulating the freezing kinetics during solidification, we can have a control on the average pore size distribution. For instance, when lower freezing temperatures result in finer pores with higher amount, higher freezing temperatures result in coarser pores with less amount. Also, the use of some additives inside the suspension leads to changes in the morphology of the solvent crystals as well as the resulting pores. However, the macro-structure of the fabricated body is highly dependent on the mold used during the process. In order to eliminate the dependency on the mold during the freeze casting process, our group recently combined this technique with inkjet-based 3D printing. With inkjet-based 3D printing, we fabricated uniform lines from single droplets, and complex 3D shapes from the lines. This provided us the ability of tailoring the macro structure of the final product without any dependency on a mold as seen in freeze casting. As a result of the 3D freeze printing process, we achieved fabricating lightweight, porous, and functional bodies with engineered micro and macro-structures. However, achieving fine droplets, and uniform lines by merging the droplets requires a good combination of fabrication parameters such as pressure adjustment inside the print head, print head speed, jetting frequency. Also, fabricating complex shapes from uniform lines requires well-adjusted parameters such as line thickness and layer height. In this study, we briefly explained the mechanics of the 3D freeze printing process. Following that we presented the development process of an open-source inkjet-based 3D printer. Finally, we explained the determination of inkjet dispensing and 3D printing parameters required for a high-quality 3D printing. During our experiments for the determination of fabrication parameters, we used a nanocellulose crystals-based ink due to its low cost and ease of preparation.


2012 ◽  
Vol 512-515 ◽  
pp. 1347-1350 ◽  
Author(s):  
Ting Ting Xu ◽  
Chang An Wang ◽  
Rui Guo

By a novel freeze-casting technique, PZT ceramics with unidirectional pore channel structure were fabricated using tert-butyl alcohol (TBA) as pore forming template, PVB as adhesive, and arabic gum as dispersing agent. The solid loading in the initial slurry varied from 15 vol.% to 40 vol.%. The porous structure can be controlled by the freezing temperature condition which was chosen by dry ice (-78°C). The sintered PZT ceramics with a high porosity showed high piezoelectric coefficient. The d33value of some samples with the porosity 26% was larger than the dense PZT ceramics which was 690 pC/N. Meanwhile, pore morphology of the porous PZT ceramics was observed with SEM and analyzed changing with the solid loading of PZT in slurry. In addition, the influences of solid loading in PZT slurry on piezoelectric and dielectric properties of the porous PZT ceramics were discussed from a theoretical perspective.


2010 ◽  
Vol 9 (1) ◽  
Author(s):  
Lutfi Lutfi

<p><em>Effect of four types of diluents</em><em>s</em><em> and four concentration of DMSO (5%, 10%, 15% and 20%) against the motility of African catfish sperm were evaluated after storage at freezing temperatures. </em><em>The steps in preparation the 16 treatments combination of the diluents</em><em> </em><em>are </em><em>preparation of diluents, mixing </em><em>diluents </em><em>with DMSO, packing </em><em>of semen </em><em>in</em><em>to</em><em> 0.3-ml straw, equilibration of </em><em>semen </em><em>at 4 °C for 30 minutes, freezing </em><em>of </em><em>semen in nitrogen vapor liquid </em><em>at </em><em>a height of 6.5 cm for 10 minutes</em><em>,</em><em> and subsequent</em><em>ly</em><em> storage of </em><em>semen </em><em>in liquid nitrogen (-196</em><em> <sup>0</sup></em><em>C) for further analy</em><em>sis</em><em> </em><em>of </em><em>post-thawing motility (PTM). </em><em>The result showed that t</em><em>he highest level of motility of spermatozoa </em><em>was </em><em>in </em><em>treatment </em><em>P</em><em><sub>1</sub></em><em>D</em><em><sub>15 </sub></em><em>(45.7 ± 4.3%) and the lowest </em><em>was </em><em>in </em><em>treatment </em><em>P<sub>2</sub>D<sub>20</sub> (14.5 ± 13.2%). The best diluent </em><em>in </em><em>this observation </em><em>was </em><em>diluents containing NaCl, KCl, CaCl<sub>2</sub> and NaHCO<sub>3</sub>. The best concentration </em><em>was </em><em>DMSO 15%. While the best interaction between the concentration of DMSO diluents is P<sub>1</sub>D<sub>15</sub> treatments containing NaCl, KCl, CaCl <sub>2</sub> and NaHCO<sub>3</sub> with a combination of 15% DMSO concentration. </em><em>The </em><em>conclusion </em><em>of the research is that </em><em>diluents containing NaCl, KCl, CaCl<sub>2</sub> and NaHCO<sub>3</sub> with a combination of 15% DMSO concentration</em><em> can be used in </em><em>cryopreservation of African catfish semen</em><em>.</em></p>


2020 ◽  
Vol 27 (18) ◽  
pp. 3046-3054
Author(s):  
Xiaomeng Zhang ◽  
Beilei Wang ◽  
Zhenzhen Liu ◽  
Yubin Zhou ◽  
Lupei Du

hERG (Human ether-a-go-go-related gene) potassium channel, which plays an essential role in cardiac action potential repolarization, is responsible for inherited and druginduced long QT syndrome. Recently, the Cryo-EM structure capturing the open conformation of hERG channel was determined, thus pushing the study on hERG channel at 3.8 Å resolution. This report focuses primarily on summarizing the design rationale and application of several fluorescent probes that target hERG channels, which enables dynamic and real-time monitoring of potassium pore channel affinity to further advance the understanding of the channels.


Author(s):  
Andrew Clarke

Freezing is a widespread ecological challenge, affecting organisms in over half the terrestrial environment as well as both polar seas. With very few exceptions, if a cell freezes internally, it dies. Polar teleost fish in shallow waters avoid freezing by synthesising a range of protein or glycoprotein antifreezes. Terrestrial organisms are faced with a far greater thermal challenge, and exhibit a more complex array of responses. Unicellular organisms survive freezing temperatures by preventing ice nucleating within the cytosol, and tolerating the cellular dehydration and membrane disruption that follows from ice forming in the external environment. Multicellular organisms survive freezing temperatures by manipulating the composition of the extracellular body fluids. Terrestrial organisms may freeze at high subzero temperatures, often promoted by ice nucleating proteins, and small molecular mass cryoprotectants (often sugars and polyols) moderate the osmotic stress on cells. A range of chaperone proteins (dehydrins, LEA proteins) help maintain the integrity of membranes and macromolecules. Thermal hysteresis (antifreeze) proteins prevent damaging recrystallisation of ice. In some cases arthropods and higher plants prevent freezing in their extracellular fluids and survive by supercooling. Vitrification of extracellular water, or of the cell cytosol, may be a more widespread response to very cold temperatures than recognised to date.


Sign in / Sign up

Export Citation Format

Share Document