Corrigendum to “Hydrofluoric acid etching of dental zirconia. Part 2: Effect on flexural strength and ageing behavior” [J. Eur. Ceram. Soc. 36 (1) (January 2016) 135–145]

2016 ◽  
Vol 36 (14) ◽  
pp. 3547
Author(s):  
Quentin Flamant ◽  
Marc Anglada
2020 ◽  
Vol 34 (12) ◽  
pp. 1253-1268
Author(s):  
João Paulo Mendes Tribst ◽  
Amanda Maria de Oliveira Dal Piva ◽  
Gabriel Cirone Lopes ◽  
Alexandre Luiz Souto Borges ◽  
Marco Antonio Bottino ◽  
...  

2014 ◽  
Vol 112 (5) ◽  
pp. 1164-1170 ◽  
Author(s):  
Timothy S. Menees ◽  
Nathaniel C. Lawson ◽  
Preston R. Beck ◽  
John O. Burgess

2011 ◽  
Vol 22 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Lucas Villaça Zogheib ◽  
Alvaro Della Bona ◽  
Estevão Tomomitsu Kimpara ◽  
John F. Mccabe

The aim of this study was to examine the effect of different acid etching times on the surface roughness and flexural strength of a lithium disilicate-based glass ceramic. Ceramic bar-shaped specimens (16 mm x 2 mm x 2 mm) were produced from ceramic blocks. All specimens were polished and sonically cleaned in distilled water. Specimens were randomly divided into 5 groups (n=15). Group A (control) no treatment. Groups B-E were etched with 4.9% hydrofluoric acid (HF) for 4 different etching periods: 20 s, 60 s, 90 s and 180 s, respectively. Etched surfaces were observed under scanning electron microscopy. Surface profilometry was used to examine the roughness of the etched ceramic surfaces, and the specimens were loaded to failure using a 3-point bending test to determine the flexural strength. Data were analyzed using one-way ANOVA and Tukey's test (?=0.05). All etching periods produced significantly rougher surfaces than the control group (p<0.05). Roughness values increased with the increase of the etching time. The mean flexural strength values were (MPa): A=417 ± 55; B=367 ± 68; C=363 ± 84; D=329 ± 70; and E=314 ± 62. HF etching significantly reduced the mean flexural strength as the etching time increased (p=0.003). In conclusion, the findings of this study showed that the increase of HF etching time affected the surface roughness and the flexural strength of a lithium disilicate-based glass ceramic, confirming the study hypothesis.


2015 ◽  
Vol 20 (4) ◽  
pp. 51-56 ◽  
Author(s):  
João Paulo Fragomeni Stella ◽  
Andrea Becker Oliveira ◽  
Lincoln Issamu Nojima ◽  
Mariana Marquezan

OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding.METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%).RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased.CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface.


2018 ◽  
Vol 6 (3) ◽  
pp. 568-573 ◽  
Author(s):  
Emilija Barjaktarova-Valjakova ◽  
Anita Grozdanov ◽  
Ljuben Guguvcevski ◽  
Vesna Korunoska-Stevkovska ◽  
Biljana Kapusevska ◽  
...  

AIM: The purpose of this review is to represent acids that can be used as surface etchant before adhesive luting of ceramic restorations, placement of orthodontic brackets or repair of chipped porcelain restorations. Chemical reactions, application protocol, and etching effect are presented as well.STUDY SELECTION: Available scientific articles published in PubMed and Scopus literature databases, scientific reports and manufacturers' instructions and product information from internet websites, written in English, using following search terms: “acid etching, ceramic surface treatment, hydrofluoric acid, acidulated phosphate fluoride, ammonium hydrogen bifluoride”, have been reviewed.RESULTS: There are several acids with fluoride ion in their composition that can be used as ceramic surface etchants. The etching effect depends on the acid type and its concentration, etching time, as well as ceramic type. The most effective etching pattern is achieved when using hydrofluoric acid; the numerous micropores and channels of different sizes, honeycomb-like appearance, extruded crystals or scattered irregular ceramic particles, depending on the ceramic type, have been detected on the etched surfaces.CONCLUSION: Acid etching of the bonding surface of glass - ceramic restorations is considered as the most effective treatment method that provides a reliable bond with composite cement. Selective removing of the glassy matrix of silicate ceramics results in a micromorphological three-dimensional porous surface that allows micromechanical interlocking of the luting composite.


2011 ◽  
Vol 46 (17) ◽  
pp. 5665-5671 ◽  
Author(s):  
Deyuan Zhang ◽  
Yu Wang ◽  
Wenqiang Zhang ◽  
Junfeng Pan ◽  
Jun Cai

Sign in / Sign up

Export Citation Format

Share Document