scholarly journals Four chemical methods of porcelain conditioning and their influence over bond strength and surface integrity

2015 ◽  
Vol 20 (4) ◽  
pp. 51-56 ◽  
Author(s):  
João Paulo Fragomeni Stella ◽  
Andrea Becker Oliveira ◽  
Lincoln Issamu Nojima ◽  
Mariana Marquezan

OBJECTIVE: To assess four different chemical surface conditioning methods for ceramic material before bracket bonding, and their impact on shear bond strength and surface integrity at debonding.METHODS: Four experimental groups (n = 13) were set up according to the ceramic conditioning method: G1 = 37% phosphoric acid etching followed by silane application; G2 = 37% liquid phosphoric acid etching, no rinsing, followed by silane application; G3 = 10% hydrofluoric acid etching alone; and G4 = 10% hydrofluoric acid etching followed by silane application. After surface conditioning, metal brackets were bonded to porcelain by means of the Transbond XP system (3M Unitek). Samples were submitted to shear bond strength tests in a universal testing machine and the surfaces were later assessed with a microscope under 8 X magnification. ANOVA/Tukey tests were performed to establish the difference between groups (α= 5%).RESULTS: The highest shear bond strength values were found in groups G3 and G4 (22.01 ± 2.15 MPa and 22.83 ± 3.32 Mpa, respectively), followed by G1 (16.42 ± 3.61 MPa) and G2 (9.29 ± 1.95 MPa). As regards surface evaluation after bracket debonding, the use of liquid phosphoric acid followed by silane application (G2) produced the least damage to porcelain. When hydrofluoric acid and silane were applied, the risk of ceramic fracture increased.CONCLUSIONS: Acceptable levels of bond strength for clinical use were reached by all methods tested; however, liquid phosphoric acid etching followed by silane application (G2) resulted in the least damage to the ceramic surface.

2020 ◽  
Vol 45 (6) ◽  
pp. 643-654
Author(s):  
P Kanzow ◽  
L Piecha ◽  
J Biermann ◽  
A Wiegand

Clinical Relevance Contamination of enamel and dentin with repair surface conditioning measures should be avoided. SUMMARY Objectives: To analyze whether the contamination with different repair conditioning measures impairs the adhesive performance of a universal adhesive applied in etch-and-rinse mode (ER) or self-etch mode (SE). Methods and Materials: Bovine enamel and dentin surfaces (each subgroup n=16) were bonded with a universal adhesive in ER or SE after contamination with different repair conditioning measures (sandblasting, silica coating, hydrofluoric acid etching, self-etching ceramic primer). In half of the groups, sand-blasting, silica coating, and hydrofluoric acid etching was followed by the use of a universal primer. If the universal adhesive was applied in ER, contamination was performed either before or after phosphoric acid etching. If the universal adhesive was applied in SE, bonding was performed after contamination. In the control groups, no contamination was simulated. Shear bond strength (SBS) and failure modes of composite buildups were determined after thermal cycling (10,000 cycles, 5°C-55°C). Statistical analysis was performed using analyses of variance, Weibull statistics, and χ2 tests (p<0.05). Results: In ER, sandblasting and silica coating significantly reduced SBS (control: enamel =25.7±4.2 MPa; dentin = 22.0±5.3 MPa) only when performed after phosphoric acid etching. Contamination with hydrofluoric acid impaired SBS on enamel but not on dentin. The self-etching ceramic primer reduced SBS, but not significantly. The contamination with the universal primer had no significant effect. In SE, all repair conditioning measures except the universal primer reduced SBS (control: enamel = 20.3±5.5 MPa; dentin = 23.0±4.0 MPa). Conclusion: Contamination of enamel and dentin by repair conditioning measures potentially affects bond strength.


2014 ◽  
Vol 39 (6) ◽  
pp. E250-E260 ◽  
Author(s):  
TA Imbery ◽  
T Gray ◽  
F DeLatour ◽  
C Boxx ◽  
AM Best ◽  
...  

SUMMARY Objective Repairing composite restorations may be a more conservative treatment than replacing the entire restoration. The objective of this in vitro study was to determine the best repair method by measuring flexural, diametral tensile, and shear bond strength of repaired composites in which the surfaces were treated with chemical primers (Add & Bond or Silane Bond Enhancer), a bonding agent (Optibond Solo Plus [OBSP]), or mechanical retention with a bonding agent. Methods Filtek Supreme Ultra shade B1B was placed in special molds to fabricate specimens that served to test the flexural, diametral tensile, or shear strength of the inherent resin substrate. The same molds were modified to make specimens for testing repair strength of the resin. Repairs were made immediately or after aging in deionized water at 37°C for seven days. All repair sites were finished with coarse Sof-Lex discs to simulate finishing new restorations or partially removing aged restorations. Repair surfaces were treated with one of the following: 1) phosphoric-acid etching and OBSP; 2) Add & Bond; 3) phosphoric-acid etching, Silane Bond Enhancer, and OBSP; or 4) quarter round bur, phosphoric-acid etching, and OBSP. Specimens were placed back in the original molds to fabricate specimens for diametral tensile or flexural testing or in an Ultradent jig to make specimens for shear bond testing. Composite resin in shade B5B was polymerized against the treated surfaces to make repairs. Two negative control groups for the three testing methods consisted of specimens in which repairs were made immediately or after aging without any surface treatments. Controls and experimental repairs were aged (water 37°C, 24 hours) before flexural, diametral tensile, or shear testing in an Instron Universal testing machine at a crosshead speed of 0.5 mm/min. Results Experimental flexural repair strengths ranged from 26.4% to 88.6% of the inherent substrate strength. Diametral tensile repair strengths ranged from 40% to 80% of the inherent substrate strength, and shear bond strength repairs ranged from 56% to 102%. Geometric means were statistically analyzed with two-way analysis of variance on their log-transformed values. Significant differences were determined using Tukey honestly significant difference (p<0.05). Conclusions Depending on the mechanical property being tested, surface treatments produced different results. OBSP produced more consistent results than chemical primers.


2016 ◽  
Vol 27 (6) ◽  
pp. 734-738 ◽  
Author(s):  
Natália Regina Santos de Matos ◽  
Ana Rosa Costa ◽  
Heloísa Cristina Valdrighi ◽  
Américo Bortolazzo Correr ◽  
Silvia Amélia Vedovello ◽  
...  

Abstract The aim of this study was to evaluate the effect of silanes, thermal cycling and acid etching on the shear bond strength (SBS) of metallic brackets to feldspathic ceramic. Feldspathic ceramic cylinders (Groups 1, 2, 5 and 6) were etched for 60 s with 10% hydrofluoric acid and Groups 3, 4, 7 and 8, without acid etching. Two layers of silane Clearfil Ceramic Primer (CCP, Groups 1 to 4) and two layers of RelyX Ceramic Primer (RCP, groups 5 to 8) were applied and dried for 60 s. Brackets were bonded to the cylinders with Transbond XT and light-activated for 40 s with Bluephase G2. All specimens were stored in deionized water at 37 °C for 24 h, and the specimens of groups 1, 3, 5 and 7 were submitted to 7,000 thermal cycles (5 °C/55 °C). After storage, the SBS test was performed at a crosshead speed of 1 mm/min. Data were subjected to three-way ANOVA and Tukey's post hoc test (α=0.05). The adhesive remnant index (ARI) was evaluated at 8x magnification. The SBS of CCP was significantly greater than of RCP (p<0.05), with or without thermal cycling. Thermal cycling significantly reduced the SBS (p<0.05). The groups submitted to acid etching showed significantly higher SBS than those without acid etching (p<0.05). In conclusion, thermal cycling reduced SBS for all groups. The best ceramic surface treatment for bracket bonding was achieved by acid etching and CCP silane. The ARI results showed predominance of score 0 for all groups.


2012 ◽  
Vol 13 (4) ◽  
pp. 487-493 ◽  
Author(s):  
PV Girish ◽  
Uma Dinesh ◽  
CS Ramachandra Bhat ◽  
Pradeep Chandra Shetty

ABSTRACT Aim To evaluate and compare the shear bond strength of metal brackets bonded to ceramic surfaces using different conditioning methods and to assess the site of bond failure after debonding. Materials and methods A total of 70 ceramic surfaces were produced with uniform shape, size and composition. The samples were divided into 7 groups (each of 10 samples). Group 1 was the control group (untreated surface); in group 2 the surface were roughened with a diamond bur; in group 3 the surface were etched with hydrofluoric acid; in group 4 the surfaces were sandblasted; in group 5 the surfaces roughened with bur and silane applied; in group 6 the surfaces were etched with hydrofluoric acid and silane applied and in group 7 the surfaces were sandblasted and silane applied. To all the above groups, metal orthodontic brackets were bonded with light cure adhesive. The brackets were later stored in artificial saliva and incubated at 37°C (24 hours). The samples were then subjected to shear bond strength test using an Instron universal testing machine. The debonded porcelain surfaces were then studied under stereomicroscope to assess site of bond failure. Results Sandblasting the ceramic surface and silane application showed the highest bond strength. Stereomicroscope examination after debonding showed that the bond failure is at bracket-adhesive interface in four groups namely hydrofluoric acid, sandblasting, hydrofluoric acid with silane and sandblasting with silane. Conclusion Sandblasting with silane combination produced the highest shear bond strength, so it is a clinically suitable method for bonding orthodontic metal brackets onto ceramic surface. Clinical relevance Bonding orthodontic brackets to ceramic crowns of patients has been a tough task. In this study, different conditioning methods were used to treat the ceramic surfaces before bonding. The results showed that sandblasting the ceramic surface prior to application of silane produced the highest shear bond strength which is clinically suitable to reduce bond failures. How to cite this article Girish PV, Dinesh U, Bhat CSR, Shetty PC. Comparison of Shear Bond Strength of Metal Brackets Bonded to Porcelain Surface using Different Surface Conditioning Methods: An in vitro Study. J Contemp Dent Pract 2012;13(4):487-493.


2017 ◽  
Vol 46 (3) ◽  
pp. 179-183
Author(s):  
Fernando Guerra SÁEZ ◽  
Ana Rosa COSTA ◽  
Adriana Simoni LUCATO ◽  
Ana Paula Terossi de GODOI ◽  
Lourenço CORRER-SOBRINHO ◽  
...  

Abstract Objective To evaluate in vitro the effect of different treatments of the ceramic surface and thermal cycling on the shear bond strength (SBS) of metallic brackets bonded to feldspathic ceramic. Material and method Ceramic cylinders were divided into four groups (n=4) according to the treatment of ceramic surface: G1-Clearfil Ceramic Primer silane and Transbond XT (CCPT); G2-etched with 10% hydrofluoric acid (HFA) for 60 s, CCP and Transbond XT (ACCPT); G3-etched with 10% HFA for 60 s, Ambar Adhesive and Transbond XT (AAAT); and, G4 - etched with 10% HFA for 60 s, RelyX Ceramic Primer silane -RCP, adhesive primer Transbond and Transbond XT (ACPPT). Brackets were bonded to the cylinders with Transbond XT and light-activated for 40 s with LED Radii Plus. All specimens were stored in deionized water at 37 °C for 24 h, and two cylinders from each group were subject to 7,000 thermal cycles in a thermal cycler (5 °C/55 °C). After storage and thermal cycling, the SBS test was performed at a crosshead speed of 1 mm/min. Data were subjected to two-way ANOVA and Tukey’s post hoc test (α=0.05). Result The SBS of ACCPT was significantly higher than the other groups (p<0.05). The specimens submitted to thermal cycling showed significantly lower SBS than those without thermal cycling (p<0.05), regardless the ceramic surface treatment. The ARI showed predominance of score 0 for all groups. Conclusion Acid etching, CCP silane and Transbond XT method obtained the best results for bracket bonding. Thermal cycling reduced SBS for all groups. Score 0 was predominant for ARI in all groups.


2019 ◽  
Vol 48 ◽  
Author(s):  
Cedirlei Gomes da Silveira ANDRADE ◽  
Diego Patrik Alves CARNEIRO ◽  
Mariana NABARRETTE ◽  
Américo Bortolazzo CORRER ◽  
Heloisa Cristina VALDRIGHI

Abstract Introduction Surface treatment prior to bonding ceramic brackets with hydrofluoric acid is indicated because of its ability to promote morphological changes necessary for adhesion. Objective To evaluate the shear bond strength (RUC) of metal brackets bonded to the feldspar ceramic surface under the action of hydrofluoric acid (AF), in different concentrations (5% and 10%) and different application times (30 and 60 seconds). Material and method Four nickel-chrome metal blocks that received an application of feldspathic ceramic were used, to which 80 metal brackets (Abzil/3M) were bonded and divided into 4 Groups (n=20) according to the acid etching procedure. The blocks were etched with 5% hydrofluoric acid for 30 and 60 seconds (AF5/30 and AF5/60, respectively) and 10% hydrofluoric acid for 30 and 60 seconds (AF10/30, AF10/60, respectively). The resin composite used was Transbond XT (3M) and the presence of a glazer was maintained on the ceramic surface. The specimens were placed on a Universal test machine Instron 4411 (Instron Corp, USA) to which a chisel was adapted to perform the shear test at a speed of 1mm/min. The data were submitted to the analysis of variance (ANOVA) and the Adhesive Remnant Index was evaluated. Result In the time interval of 30 seconds, there was no significant difference for the 5% and 10% hydrofluoric acid concentrations. In the 60-second time interval, the 10% concentration showed significantly higher shear bond strength values (p<0.05). The ARI showed predominance of scores 1 and 2. Conclusion It was concluded that 10% hydrofluoric acid showed higher shear bond strength values in 60 seconds of etching, while 5% hydrofluoric acid showed no significant difference between the etching times.


2017 ◽  
Vol 18 (3) ◽  
pp. 182-187
Author(s):  
Ayah A Al-Asmar ◽  
Khaled S Hatamleh ◽  
Muhanad Hatamleh ◽  
Mohammad Al-Rabab'ah

ABSTRACT Introduction The aim of this study is to evaluate the effect of different combinations of various surface treatments on the shear bond strength (SBS) of repaired composite resin. Materials and methods A total of 122 composite samples were prepared from Filtek Z350 XT. Samples were light cured and stored for 6 weeks. Surface treatment of old composite was done in five groups: Group I: bur roughening + phosphoric acid etching, group II: bur roughening + hydrofluoric acid etching + silane coupling agent, group II: air abrasion + phosphoric acid etching, group IV: air abrasion + phosphoric acid etching + silane coupling agent, group V: air abrasion + hydrofluoric acid etching + silane coupling agent. Bonding agent was applied to all surface-treated old composites and light cured. The fresh composite resin was bonded to treated surfaces and cured and stored in water at 37°C for 6 weeks. Shear bond strength was measured by a universal testing machine. Results Shear bond strength values of all groups were not statistically significant except for group V, which showed statistically significant higher SBS than group III. Conclusion Techniques with readily available materials at the clinic can attain similar SBS to more elaborate technique involving potentially hazardous materials. How to cite this article Al-Asmar AA, Hatamleh KS, Hatamleh M, Al-Rabab'ah M. Evaluating Various Preparation Protocols on the Shear Bond Strength of Repaired Composite. J Contemp Dent Pract 2017;18(3):182-187.


10.2341/07-63 ◽  
2008 ◽  
Vol 33 (2) ◽  
pp. 155-162 ◽  
Author(s):  
A-K. Lührs ◽  
S. Guhr ◽  
R. Schilke ◽  
L. Borchers ◽  
W. Geurtsen ◽  
...  

Clinical Relevance When using self-etch adhesives to bond composite materials to enamel, there is concern about the ability to achieve bond strengths comparable to approved etch-and-rinse systems. An additional phosphoric acid etching can improve the shear bond strength of self-etch adhesives to enamel.


2018 ◽  
Vol 41 (3) ◽  
pp. 160-167 ◽  
Author(s):  
Pinar Cevik ◽  
Oguz Eraslan ◽  
Kursat Eser ◽  
Suleyman Tekeli

Purpose: The aim of this study was to evaluate the effect of six different surface conditioning methods on the shear bond strength of ceramic brackets bonded to feldspathic porcelain. Materials and methods: A total of 60 feldspathic porcelain disks were fabricated and divided into six subgroups including 10 specimens in each. Specimens were first treated one of the following surface conditioning methods, namely, 37% phosphoric acid (G-H3PO4), 9.4% hydrofluoric acid (G-HF), grinding with diamond burs (G-Grinding), Nd:YAG laser (G-Nd:YAG), Airborne-particle abrasion (G-Abrasion). Specimens were also coated with silane without surface treatment for comparison (G-Untreated). A total of 60 ceramic brackets were bonded to porcelain surfaces with a composite resin and then subjected to thermocycling 2500× between 5°C and 55°C. The shear bond strength test was carried out using a universal testing device at a crosshead speed of 0.5 mm/min. Failure types were classified according to the adhesive remnant index. Analysis of variance and Tukey tests were used for statistical analysis (α = 0.05). Microstructure of untreated and surface-treated specimens was investigated by scanning electron microscopy. Results: Using G-Abrasion specimens resulted in the highest shear bond strength value of 8.58 MPa for feldspathic porcelain. However, the other specimens showed lower values: G-Grinding (6.51 MPa), G-Nd:YAG laser (3.37 MPa), G-HF (2.71 MPa), G-H3PO4 (1.17 MPa), and G-Untreated (0.93 MPa). Conclusion: Airborne-particle abrasion and grinding can be used as surface treatment techniques on the porcelain surface for a durable bond strength. Hydrofluoric acid and phosphoric acid etching methods were not convenient as surface treatment methods for the feldspathic porcelain.


Sign in / Sign up

Export Citation Format

Share Document