Mechanical and dielectric properties of 3D printed highly porous ceramics fabricated via stable and durable gel ink

2019 ◽  
Vol 39 (15) ◽  
pp. 4680-4687 ◽  
Author(s):  
Haize Jin ◽  
Zhihua Yang ◽  
Jing Zhong ◽  
Delong Cai ◽  
Hailiang Li ◽  
...  
2020 ◽  
Vol 67 (1) ◽  
pp. 148-155
Author(s):  
Anatoliy V. Fedotov ◽  
Viktor S. Grigoriev ◽  
Dmitriy A. Kovalev ◽  
Andrey A. Kovalev

To speed up the wastewater treatment under aerobic conditions and to optimize the processes of anaerobic wastewater treatment in digesters, immobilization technologies of microorganisms and enzymes on solid carriers are used. Ceramic carriers based on aluminosilicates and alumina are one of the promising inorganic biomass carriers. (Research purpose) To study the structure of porous ceramic biomass carriers for anaerobic processing of organic waste and evaluate the prospects for their use. (Materials and methods) The substrate for anaerobic digestion was a mixture of sediments of the primary and secondary sewage sumps of the Lyubertsy treatment facilities. K-65 cattle feed was used to ensure the constancy of the composition of organic substances in substrates as a cosubstrate. The authors used the method of low-temperature nitrogen adsorption of Bruner-Emmett-Teller to study the pore structure and specific surface of solid carriers on a specific surface analyzer Quntachrome Autosorb-1. (Results and discussion) The main characteristics (specific surface, volume of micro- and mesopores, predominant pore radius, water absorption and others) of chamotte foam lightweight and highly porous corundum ceramics were determined. It was revealed that ceramic materials with a developed surface and electrically conductive material provided an increase in biogas yield by 3.8-3.9 percent with an increase in methane content by an average of 5 percent. (Conclusions) The results of anaerobic digestion showed a positive effect of both a conductive carrier and highly porous ceramic materials on the process of anaerobic bioconversion of organic waste into biogas. It is advisable to expand experimental studies on the use of a conductive carrier with a developed surface based on highly porous ceramics.


2017 ◽  
Vol 5 (47) ◽  
pp. 12430-12440 ◽  
Author(s):  
N. Phatharapeetranun ◽  
B. Ksapabutr ◽  
D. Marani ◽  
J. R. Bowen ◽  
V. Esposito

“3D-printed” anisotropy BTNFs/PVDF nanohybrids are successfully fabricated by the FDM technique which is attractive for developing novel functionalities in dielectric devices.


Procedia CIRP ◽  
2016 ◽  
Vol 49 ◽  
pp. 55-60 ◽  
Author(s):  
Alan C.S. Dantas ◽  
Debora H. Scalabrin ◽  
Roberta De Farias ◽  
Amanda A. Barbosa ◽  
Andrea V. Ferraz ◽  
...  

2019 ◽  
Vol 101-B (7_Supple_C) ◽  
pp. 40-47 ◽  
Author(s):  
S. Sporer ◽  
L. MacLean ◽  
A. Burger ◽  
M. Moric

AimsOur intention was to investigate if the highly porous biological fixation surfaces of a new 3D-printed total knee arthroplasty (TKA) achieved adequate fixation of the tibial and patellar components to the underlying bone.Patients and MethodsA total of 29 patients undergoing primary TKA consented to participate in this prospective cohort study. All patients received a highly porous tibial baseplate and metal-backed patella. Patient-reported outcomes measures were recorded and implant migration was assessed using radiostereometric analysis.ResultsPatient function significantly improved by three months postoperatively (p < 0.001). Mean difference in maximum total point motion between 12 and 24 months was 0.021 mm (-0.265 to 0.572) for the tibial implant and 0.089 mm (-0.337 to 0.758) for the patellar implant. The rate of tibial and patellar migration was largest over the first six postoperative weeks, with no changes in mean tibia migration occurring after six months, and no changes in mean patellar migration occurring after six weeks. One patellar component showed a rapid rate of migration between 12 and 24 months.ConclusionBiological fixation appears to occur reliably on the highly porous implant surface of the tibial baseplate and metal-backed patellar component. Rapid migration after 12 months was measured for one patellar component. Further investigation is required to assess the long-term stability of the 3D-printed components and to determine if the high-migrating components achieve fixation. Cite this article: Bone Joint J 2019;101-B(7 Supple C):40–47


Author(s):  
Olaf Diegel ◽  
Andrew Withell ◽  
Deon Debeer ◽  
Mark Wu

This paper describes research in adapting 3D printers to operate with low-cost ceramic materials. The components produced with these clay-based ceramic powders can be fired to produce strong, complex and lightweight ceramic parts. The final material properties, including the porosity of the parts, can be controlled through the part design and, potentially, through additives to the material that burn out during firing. The paper begins with a brief description of the 3D printing process and how it can be used with clay powders. It then introduces a factorial design experiment initiated to explore the effect of ingredient and parameter variations on the dimensional stability and material properties of green and fired ceramic parts. It then presents a case study in which 3D printed ceramic parts are used in the humidification system for an infant incubator for developing countries.


Holzforschung ◽  
2003 ◽  
Vol 57 (4) ◽  
pp. 440-446 ◽  
Author(s):  
R. Klingner ◽  
J. Sell ◽  
T. Zimmermann ◽  
A. Herzog ◽  
U. Vogt ◽  
...  

Summary The use of wood as a structure-giving material may be the key to producing temperature-resistant ceramics featuring high and directed porosity combined with necessary strength. The objective of this study was to develop a simple process to convert the evolutionarily optimized material wood into highly porous ceramics. Beech and pine, known to be relatively permeable, were pyrolyzed in a nitrogen atmosphere. The carbon-templates formed were infiltrated with various kinds of silica sol (SiO2). The resulting SiO2/C composite was transformed into a SiC-ceramic (silicon carbide) via carbothermal reduction. Through the described process the macroscopic pore-structure of wood was transformed exactly into SiC. The SiC-ceramic produced proved to be thermo-resistant. It remained stable in oxygen atmosphere at 1200°C, after a SiO2 coating around the SiC had been formed. This study focused on the alteration of the cell wall microstructure during the conversion of wood into SiC. Furthermore, the optimization of the individual process steps, pyrolysis, infiltration and ceramization along the most efficient route was pursued.


Sign in / Sign up

Export Citation Format

Share Document