Enhanced energy storage performances of CaTiO3-based ceramic through A-site Sm3+ doping and A-site vacancy

2021 ◽  
Vol 41 (1) ◽  
pp. 352-359
Author(s):  
Jiawei Zhang ◽  
Jian Wang ◽  
Dandan Gao ◽  
Huan Liu ◽  
Jiyang Xie ◽  
...  
Keyword(s):  
A Site ◽  
2010 ◽  
Vol 146-147 ◽  
pp. 89-92
Author(s):  
Zhi Gang Gai ◽  
Yuan Yuan Feng ◽  
Jin Feng Wang ◽  
Hong Wu

Na0.5Bi4.5Ti4O15-based materials with A-site vacancy were synthesized using conventional solid state processing. The (Li,Ce) modification of Na0.5Bi4.5Ti4O15-based materials resulted in the obvious improvement of the piezoelectric activity and dielectric permittivity. The dielectric and piezoelectric properties of Na0.5Bi4.5Ti4O15-based ceramics exhibiting a very stable temperature behavior, together with its high TC ~641oC, excellent piezoelectric coefficient ~28pC/N and very low temperature coefficient of resonant frequency, making the (Li,Ce) modified Na0.5Bi4.5Ti4O15-based ceramics a promising candidate for high temperature applications.


2015 ◽  
Vol 44 (13) ◽  
pp. 6175-6183 ◽  
Author(s):  
Pengfei Jiang ◽  
Wenliang Gao ◽  
Rihong Cong ◽  
Tao Yang

A detailed structural characterization on A1–1.5xEux□0.5xWO4 and A0.64–0.5yEu0.24Liy□0.12–0.5yWO4 (A = Ca, Sr; □ = vacancy) prove the A-site vacancy mechanism for charge balance.


1996 ◽  
Vol 11 (3) ◽  
pp. 650-656 ◽  
Author(s):  
Xiaoyue Xiao ◽  
Yan Xu ◽  
Zhigang Zeng ◽  
Zhilun Gui ◽  
Longtu Li ◽  
...  

The order-disorder states of the A-site vacancy of PBN solid solution affected by different thermal treatments were studied with the aid of High Resolution Electron Microscopy (HREM). PBN ceramics around the morphotropic phase boundary were prepared through two routes to control ordering degree of the A-site vacancy: (1) samples through quenching processes resulted in chaotic states of the A-site vacancies and misfit anti-phase boundary; (2) samples through slow cooling led to an ordered structure of the vacancies in the A1-site. The ordered A1-site vacancies were modulated by interchanges of the sublattices of the ordered vacancies and the Pb2+ cations in the A1-sites along both and orientations, forming a narrow discommensurate wall between two anti-phase domains. The anti-phase domains were observed as a regular belt structure with dimensions of about 45 nm × (≥120) nm. The belt nano-domain structures were a result of quasi-equilibrium thermodynamic processes.


2010 ◽  
Vol 35 (3) ◽  
pp. 503-506 ◽  
Author(s):  
Mayuka Anzai ◽  
Hiroshi Kawakami ◽  
Toshio Takayama ◽  
Hiroshi Yamamura

2022 ◽  
Vol 11 (2) ◽  
pp. 283-294
Author(s):  
Zhipeng Li ◽  
Dong-Xu Li ◽  
Zong-Yang Shen ◽  
Xiaojun Zeng ◽  
Fusheng Song ◽  
...  

AbstractLead-free bulk ceramics for advanced pulsed power capacitors show relatively low recoverable energy storage density (Wrec) especially at low electric field condition. To address this challenge, we propose an A-site defect engineering to optimize the electric polarization behavior by disrupting the orderly arrangement of A-site ions, in which $${\rm{B}}{{\rm{a}}_{0.105}}{\rm{N}}{{\rm{a}}_{0.325}}{\rm{S}}{{\rm{r}}_{0.245 - 1.5x}}{_{0.5x}}{\rm{B}}{{\rm{i}}_{0.325 + x}}{\rm{Ti}}{{\rm{O}}_3}$$ Ba 0.105 Na 0.325 Sr 0.245 − 1.5 x □ 0.5 x Bi 0.325 + x TiO 3 ($${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T , x = 0, 0.02, 0.04, 0.06, and 0.08) lead-free ceramics are selected as the representative. The $${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T ceramics are prepared by using pressureless solid-state sintering and achieve large Wrec (1.8 J/cm3) at a low electric field (@110 kV/cm) when x = 0.06. The value of 1.8 J/cm3 is super high as compared to all other Wrec in lead-free bulk ceramics under a relatively low electric field (< 160 kV/cm). Furthermore, a high dielectric constant of 2930 within 15% fluctuation in a wide temperature range of 40–350 °C is also obtained in $${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T (x = 0.06) ceramics. The excellent performances can be attributed to the A-site defect engineering, which can reduce remnant polarization (Pr) and improve the thermal evolution of polar nanoregions (PNRs). This work confirms that the $${\rm{BN}}{{\rm{S}}_{0.245 - 1.5x}}{_{0.5x}}{{\rm{B}}_{0.325 + x}}{\rm{T}}$$ BNS 0.245 − 1.5 x □ 0.5 x B 0.325 + x T (x = 0.06) ceramics are desirable for advanced pulsed power capacitors, and will push the development of a series of Bi0.5Na0.5TiO3 (BNT)-based ceramics with high Wrec and high-temperature stability.


2020 ◽  
Vol 8 (45) ◽  
pp. 23965-23973
Author(s):  
Hangfeng Zhang ◽  
Bin Yang ◽  
A. Dominic Fortes ◽  
Haixue Yan ◽  
Isaac Abrahams

The structural and dielectric properties of barium/strontium substituted Bi0.5Na0.5TiO3 were examined in compositions of general formula (Ba0.4Sr0.6TiO3)x(Bi0.5Na0.5TiO3)1−x.


Sign in / Sign up

Export Citation Format

Share Document