Global transmission of multiple-drug resistant Neisseria gonorrhoeae strains refractive to cephalosporin treatment

2012 ◽  
Vol 111 (9) ◽  
pp. 463-464 ◽  
Author(s):  
Shu-Ying Li
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zachary D. Aron ◽  
Atousa Mehrani ◽  
Eric D. Hoffer ◽  
Kristie L. Connolly ◽  
Pooja Srinivas ◽  
...  

AbstractBacterial ribosome rescue pathways that remove ribosomes stalled on mRNAs during translation have been proposed as novel antibiotic targets because they are essential in bacteria and are not conserved in humans. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, the main ribosome rescue pathway in bacteria. Here, we report optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles, producing MBX-4132, which clears multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Single particle cryogenic-EM studies of non-stop ribosomes show that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein bL27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules. These results show that trans-translation is a viable therapeutic target and reveal a new conformation within the bacterial ribosome that may be critical for ribosome rescue pathways.


2020 ◽  
Author(s):  
Zachary D. Aron ◽  
Atousa Mehrani ◽  
Eric D. Hoffer ◽  
Kristie L. Connolly ◽  
Matthew C. Torhan ◽  
...  

AbstractThe trans-translation pathway for rescuing stalled ribosomes is conserved and essential in bacterial pathogens but has no mammalian homolog, making it an ideal target for new antibiotics. We previously reported the discovery of a family of acylaminooxadiazoles that selectively inhibit trans-translation, resulting in broad-spectrum antibiotic activity. Optimization of the pharmacokinetic and antibiotic properties of the acylaminooxadiazoles produced MBX-4132, which cleared multiple-drug resistant Neisseria gonorrhoeae infection in mice after a single oral dose. Cryo-EM studies of non-stop ribosomes showed that acylaminooxadiazoles bind to a unique site near the peptidyl-transfer center and significantly alter the conformation of ribosomal protein L27, suggesting a novel mechanism for specific inhibition of trans-translation by these molecules.One Sentence SummaryRibosome rescue inhibitors reveal a new conformation of the ribosome and kill drug-resistant Neisseria gonorrhoeae in vivo.


Sign in / Sign up

Export Citation Format

Share Document