Assessment of operation management for beer packaging line based on field failure data: A case study

2010 ◽  
Vol 98 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Panagiotis H. Tsarouhas ◽  
Ioannis S. Arvanitoyannis
Author(s):  
SHAIK HUSSAIN BASHA ◽  
SUDHANGSHU CHAKRAVORTY

The objective of every industry is to bring world-class quality products to the market in shortest possible time with least expenses. To meet this objective manufacturer’s always remains non compliant with Reliability requirement of the products due to which field failure rate increases and in turn increases the warranty cost. In this work, an attempt has been made to improve the field reliability for consumer product through a proposed step by step Reliability Improvement Methodology. The proposed methodology includes analysis of field failure data, failure analysis for identifying root cause, experimental investigation to confirm root causes, design modification recommendations and improvement validation through accelerated testing. Further, this analysis helps the manufacturers in warranty extension decision making for the existing products and in the improvement of the next generation product’s performance which directly increases the brand image and profits of an organization.


Author(s):  
Garima Sharma ◽  
Rajiv Nandan Rai

Maintenance, repair and overhaul (MRO) facilities deal with situations where repairable systems and its components are required to be designated as high failure rate components (HFRCs). The shortlisted HFRCs are then selected for reliability improvement. The procedure of short listing components as HFRCs is commonly based on experts’ field experience or number of failures. In case of organizations dealing with complex and critical repairable systems like military aviation (MA) and nuclear industries, the subjectivity in the short listing of HFRCs can lead to prolonged unavailability of equipment and may incur financial loss. Thus, a scientific methodology is required to be developed for HFRC designation. The paper develops a methodology for HFRC designation through risk-based threshold on intensity function by considering combat aircraft engines as a case. To develop the threshold methodology, the paper uses generalized renewal process (GRP) for multiple repairable systems (MRS) considering both corrective and preventive maintenance as imperfect. The proposed methodology is duly validated with the help of field failure data of two variants of the same aero engine of a particular combat aircraft. The developed methodology in this paper is highly inspired by the problems faced by the various industries while operating the repairable systems and can be extended for systems which undergo periodic maintenance, repair and overhaul.


2018 ◽  
Vol 18 (3) ◽  
pp. 250-259 ◽  
Author(s):  
Yangwoo Seo ◽  
Kyeshin Lee ◽  
Younho Lee ◽  
Jeyong Kim

2014 ◽  
Vol 8 (3) ◽  
pp. 1713-1727 ◽  
Author(s):  
Zhisheng Ye ◽  
Hon Keung Tony Ng
Keyword(s):  

Author(s):  
Roozbeh Bakhshi ◽  
Peter Sandborn

With renewable energy and wind energy in particular becoming mainstream means of energy production, the reliability aspect of wind turbines and their sub-assemblies has become a topic of interest for owners and manufacturers of wind turbines. Operation and Maintenance (O&M) costs account for more than 25% of total costs of onshore wind projects and these costs are even higher for offshore installations. Effective management of O&M costs depends on accurate failure prediction for turbine sub-assemblies. There are numerous models that predict failure times and O&M costs of wind farms. All these models have inputs in the form of reliability parameters. These parameters are usually generated by researchers using field failure data. There are several databases that report the failure data of operating wind turbines and researches use these failure data to generate the reliability parameters through various methods of statistical analysis. However, in order to perform the statistical analysis or use the results of the analysis, one must understand the underlying assumptions of the database along with information about the wind turbine population in the database such as their power rating, age, etc. In this work, we analyze the relevant assumptions and discuss what information is required from a database in order to improve the statistical analysis on wind turbines’ failure data.


2019 ◽  
Vol 26 (1) ◽  
pp. 87-103
Author(s):  
Rajkumar Bhimgonda Patil

Purpose Reliability, maintainability and availability of modern complex engineered systems are significantly affected by four basic systems or elements: hardware, software, organizational and human. Computerized Numerical Control Turning Center (CNCTC) is one of the complex machine tools used in manufacturing industries. Several research studies have shown that the reliability and maintainability is greatly influenced by human and organizational factors (HOFs). The purpose of this paper is to identify critical HOFs and their effects on the reliability and maintainability of the CNCTC. Design/methodology/approach In this paper, 12 human performance influencing factors (PIFs) and 10 organizational factors (OFs) which affect the reliability and maintainability of the CNCTC are identified and prioritized according to their criticality. The opinions of experts in the fields are used for prioritizing, whereas the field failure and repair data are used for reliability and maintainability modeling. Findings Experience, training, and behavior are the three most critical human PIFs, and safety culture, problem solving resources, corrective action program and training program are the four most critical OFs which significantly affect the reliability and maintainability of the CNCTC. The reliability and maintainability analysis reveals that the Weibull is the best-fit distribution for time-between-failure data, whereas log-normal is the best-fit distribution for Time-To-Repair data. The failure rate of the CNCTC is nearly constant. Nearly 66 percent of the total failures and repairs are typically due to the hardware system. The percentage of failures and repairs influenced by HOFs is nearly only 16 percent; however, the failure and repair impact of HOFs is significant. The HOFs can increase the mean-time-to-repair and mean-time-between-failure of the CNCTC by nearly 65 and 33 percent, respectively. Originality/value The paper uses the field failure data and expert opinions for the analysis. The critical sub-systems of the CNCTC are identified using the judgment of the experts, and the trend of the results is verified with published results.


Sign in / Sign up

Export Citation Format

Share Document