scholarly journals Prediction of the effect of sucrose on equilibrium swelling of starch suspensions

2021 ◽  
Vol 294 ◽  
pp. 110397
Author(s):  
Gnana Prasuna Desam ◽  
Owen Griffith Jones ◽  
Ganesan Narsimhan
Keyword(s):  
1971 ◽  
Vol 44 (1) ◽  
pp. 152-165 ◽  
Author(s):  
A. E. Oberth

Abstract The effect of loose chain ends on tensile properties and equilibrium swelling of crosslinked polyurethane rubbers is studied. As in plasticized elastomers, tensile strength and elastic modulus are reduced approximately by a factor (1−νE,P)2, where νE,P is the volume fraction of loose chain ends, plasticizer, or both. This effect is much larger than predicted by present theory. Also the equilibrium volume swelling ratio, V0/V, of rubbers having terminal chains or an equal volume of plasticizer is the same, provided they do not differ in crosslink density. However, the volume fraction of “network rubber” in the equilibrium swollen specimen, ν2, differs owing to the non-extractability of terminal chains. On this basis a method is proposed which allows experimental determination of the volume fraction of loose ends. Elastomers abounding in loose chain ends show markedly less long term stress relaxation. This effect is not clearly understood but is useful to detect the presence of non load-bearing network.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


1972 ◽  
Vol 130 (1) ◽  
pp. 16P-17P ◽  
Author(s):  
A G Ogston ◽  
B N Preston ◽  
J D Wells
Keyword(s):  

Author(s):  
Inna Slepchuk ◽  
Olga Ya. Semeshko ◽  
Yuliya G. Saribekova ◽  
Irina N. Kulish ◽  
Igor V. Gorokhov

Results of study of influence of amount of functional groups of glycidyl ethers on characteristics of the spatial grid of crosslinked polyurethane polymer are presented. Parameters of a three-dimensional spatial grid of investigated samples of polymeric films and their physical and mechanical properties were determined by a method of equilibrium swelling in organic solvents.


Polymer ◽  
2008 ◽  
Vol 49 (17) ◽  
pp. 3737-3743 ◽  
Author(s):  
Ganesh Iyer ◽  
L.M. Viranga Tillekeratne ◽  
Maria R. Coleman ◽  
Arunan Nadarajah

2019 ◽  
Vol 11 (05) ◽  
pp. 1950050 ◽  
Author(s):  
Rui Xiao ◽  
Jin Qian ◽  
Shaoxing Qu

If gel swells in binary solvents, two unusual phenomena may appear. Two solvents with relatively low swelling ability may become a good solvent for the polymer with high swelling ability when mixed, which is known as a cosolvency effect. In contrast, a cononsolvency effect indicates polymer is less soluable in solvent mixtures than it is in each of the cosolvents. In this work, we develop a thermodynamic theory to describe the equilibrium swelling behaviors of gels in binary solvents based on the Flory–Huggins lattice model. The model can reproduce both cosolvency and cononsolvency effects, showing that these effects are caused by the preferential absorption of the solvent by polymer together with solvent–solvent interactions. The model is also applied to describe experimentally observed cosolvency and cononsolvency effects in the literature, which shows an acceptable agreement.


Sign in / Sign up

Export Citation Format

Share Document