polymeric films
Recently Published Documents


TOTAL DOCUMENTS

1055
(FIVE YEARS 182)

H-INDEX

52
(FIVE YEARS 8)

2022 ◽  
pp. 134665
Author(s):  
Hyemin Lee ◽  
Yoon Ji Seo ◽  
Jaekyoung Kim ◽  
Myung Jun Bae ◽  
Seokhoon Hwang ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 12
Author(s):  
Wing-Fu Lai

Antioxidant active food packaging can extend the shelf life of foods by retarding the rate of oxidation reactions of food components. Although significant advances in the design and development of polymeric packaging films loaded with antioxidants have been achieved over the last several decades, few of these films have successfully been translated from the laboratory to commercial applications. This article presents a snapshot of the latest advances in the design and applications of polymeric films for antioxidant active food packaging. It is hoped that this article will offer insights into the optimisation of the performance of polymeric films for food packaging purposes and will facilitate the translation of those polymeric films from the laboratory to commercial applications in the food industry.


2021 ◽  
Author(s):  
Tommaso Marchesi D’Alvise ◽  
Sruthi Sunder ◽  
Roger Hasler ◽  
Julia Moser ◽  
Wolfgang Knoll ◽  
...  

The resource intensive and environmentally unfriendly synthesis, recycling and disposal of today’s plastics has sparked interest in greener polymer processing. Bioderived polymers are one of many current areas of research that show promise for a sustainable future. One bioderived polymer that has been in the spotlight for the past decade due to its unique properties is polydopamine (PDA). Its ability to adhere to virtually any surface showing high stability in a wide pH range from 2-10 and in several organic solvents makes it a suitable candidate for several applications ranging from medical devices, coatings to biosensing applications. However, its strong and broad light absorption limits many applications that rely on transparent material, moreover fluorescence applications are limited by the high quenching efficiency of PDA. Therefore, new bioderived polymers that share similar features as PDA without fluorescent quenching are highly desirable. In this study, the electropolymerization of a bioderived analogue of dopamine, 3-amino-L-tyrosine (ALT) is demonstrated. The properties of the resultant polymer, poly-amino-L-tyrosine (p-ALT), exhibit several characteristics complementary to or even exceeding those of PDA and of its analog, poly-norepinephrine (p-NorEp), rendering p-ALT attractive for the development of sensors and photoactive devices. Cyclic voltammetry, spectroelectrochemistry and electrochemical quartz crystal microbalance have been applied to study the electrodeposition of this material and the resulting polymeric films have been compared to PDA and p-NorEp. Impedance spectroscopy revealed increased ions permeability of p-ALT with respect PDA and p-NorEp. Moreover reduced fluorescence quenching of p-ALT film was achieved supporting its application as coating for biosensors, organic semiconductors and new nanocomposite materials.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3966
Author(s):  
Giulia Giuntoli ◽  
Marta Bini ◽  
Benedetta Ciuffi ◽  
Barbara Salvadori ◽  
Giovanni Baldi ◽  
...  

The influence of a nanodispersion of TiO2 in water (nanoparticle size: 40 nm, polydispersity index: 0.25), brushed on a Paraloid film and subjected to UV–Vis irradiation was evaluated. The TiO2 nanodispersions showed a tendency to reduce the molecular weight of Paraloid due to its photocatalytic properties. FTIR and GPC analyses and SEM images suggested the degradation of the polymer, while chromatic variations of the films were scarcely detected. This study is very remarkable in the perspective of using this material for the removal of polymeric films used in conservation.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3946
Author(s):  
Angham G. Hadi ◽  
Sadiq J. Baqir ◽  
Dina S. Ahmed ◽  
Gamal A. El-Hiti ◽  
Hassan Hashim ◽  
...  

Poly(vinyl chloride) suffers from degradation through oxidation and decomposition when exposed to radiation and high temperatures. Stabilizers are added to polymeric materials to inhibit their degradation and enable their use for a longer duration in harsh environments. The design of new additives to stabilize poly(vinyl chloride) is therefore desirable. The current study includes the synthesis of new tin complexes of 4-methoxybenzoic acid and investigates their potential as photostabilizers for poly(vinyl chloride). The reaction of 4-methoxybenzoic acid and substituted tin chlorides gave the corresponding substituted tin complexes in good yields. The structures of the complexes were confirmed using analytical and spectroscopic methods. Poly(vinyl chloride) was doped with a small quantity (0.5%) of the tin complexes and homogenous thin films were made. The effects of the additives on the stability of the polymeric material on irradiation with ultraviolet light were assessed using different methods. Weight loss, production of small polymeric fragments, and drops in molecular weight were lower in the presence of the additives. The surface of poly(vinyl chloride), after irradiation, showed less damage in the films containing additives. The additives, in particular those containing aromatic (phenyl groups) substitutes, inhibited the photodegradation of polymeric films significantly. Such additives act as efficient ultraviolet absorbers, peroxide quenchers, and hydrogen chloride scavengers.


2021 ◽  
pp. 089270572110571
Author(s):  
Omair Malik ◽  
Tina Joshi ◽  
Vishal Goel ◽  
Gurpreet Singh Kapur ◽  
Leena Nebhani

Silica derived from variety of sources and its functionalized form has been studied as an antiblock additive in polypropylene (PP). Commonly inorganic antiblock additives are added to PP films to reduce the blocking and facilitate separation of polymeric films. However, such types of additives can cause a reduction of clarity in transparent films. In the present work, comparative analysis of silica obtained from various sources specifically from rice husk ash and its further functionalization/modifications using n-octyltriethoxysilane has been performed. Since silica synthesized via rice husk ash was obtained from waste (rice husk ash), this further solves the problem of ash disposal. The functionalized silica has been characterized using Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA). The morphological analysis and particle shape and size has been characterized by scanning electron microscopy (SEM). The melt flow index (MFI), yellowness index and other mechanical characterizations including tensile and impact strength was performed for 30–40 µm thick tubular quenched polypropylene (TQPP) films. These films were evaluated to have high transmittance (above 93%), high clarity (above 98%) and very low haze (less than 2%) indicating the high transparency and improved optical properties. The blocking force and optical properties are quite similar for TQPP film containing silica synthesized from rice husk ash and commercial grade silica and hence, proving silica synthesized from rice husk ash to be an effective substitute for commercial silica in TQPP films.


Sign in / Sign up

Export Citation Format

Share Document