Serial fractionation of spent brewer’s yeast protein hydrolysate by ultrafiltration: a peptide-rich product with low RNA content

2021 ◽  
pp. 110737
Author(s):  
Gabriela Vollet Marson ◽  
Stella Lacour ◽  
Miriam Dupas Hubinger ◽  
Marie-Pierre Belleville
2021 ◽  
pp. 110569
Author(s):  
Gabriela Vollet Marson ◽  
Débora Tamires Vitor Pereira ◽  
Mariana Teixeira da Costa Machado ◽  
Marco Di Luccio ◽  
Julian Martínez ◽  
...  

2018 ◽  
Vol 54 (2C) ◽  
pp. 458
Author(s):  
Nguyen Thi Thanh Ngoc

Brewer’s yeast spent, obtained after the main fermentation stage, is a rich- in-protein source(protein content accounts for 48 - 50 % dry matter). In order to use efficiently this source, it washydrolysed by different methods. Protein hydrolysate products are normally mixtures of peptidesand amino acids. Protein hydrolysates have a wide range of applications in food. It can be usedas emulsifying agents in a number of applications such as salad dressings, spreads, ice cream,coffee whitener, cracker, and meat products like sausages. However, bitterness in hydrolysates isone of the major undesirable aspects for various applications in food processing. In this study,we used enzymatic mixture alcalase and flavourzyme, yeast treatment methods to hydrolysebrewer’s yeast. The hydrolysate and fractions of protein hydrolysate obtained after filtration with10 kDa and 3 kDa filters were used for determination of bitterness and hydrophobic amino acidscontent. The bitter taste of hydrolysate was determined by sensory method (using quininestandard) and amino acid content was analysed by HPLC method. The result showed the closerelationship between bitter taste and hydrophobic amino acid content. The bitter taste of proteinhydrolysate was reduced as the hydrophobic amino acid content decreased. When the bitter taste(equivalent to quinine concentration) decreased from 16.25 μmol/l to 3.59 μmol/l, the totalcontent of hydrophobic amino acids in protein hydrolysate reduced from 1653 μg/ml to 932μg/ml.


2018 ◽  
Vol 54 (4A) ◽  
pp. 172
Author(s):  
Nguyen Thi Thanh Ngoc

Spent brewer’s yeast, obtained after the main fermentation stage, is a rich- in-protein source (protein content accounts for 48 - 50 % dry matter). In order to use efficiently this protein source for using in food industry, it was hydrolysed by different methods into mixtures of peptides and amino acids. So that it has a wide range of applications in food. It can be used as emulsifying agents in a number of applications such as salad dressings, spreads, ice cream, coffee whitener, cracker, and meat products like sausages. However, bitterness in hydrolysates is one of the major undesirable aspects for various applications in food processing. In this study, influences of factors (E/S ratio, pH and temperature) on bitterness of hydrolysate were studied to choose the best hydrolysis conditions by using flavourzyme, alcalase and neutrase. The bitterness of hydrolysate was determined by intensity sensory method (using quinine standard) and amino acid content was analysed by HPLC method. The result showed that bitterness of brewer’s yeast hydrolysate by flavourzyme is the lowest and that by neutrase is the highest. In particular, the bitterness of hydrolysates have reached values of  15.2–40.42 µmol quinine/l (FH - flavourzyme hydrolysate), 21–64.99 µmol quinine/l (AH - alcalase hydrolysate) and 34.62–64.26 µmol quinine/l (NH - neutrase hydrolysate), respectively. The hydrolysis conditions in using flavourzyme were chosen at 50 oC, pH 7, E/S ratio 7.1U/g and in using alcalase - at 55 oC, pH 8, ratio E/S 7.2 U/g, respectively. At this conditions, bitterness reached values 15.44 µmol quinine/l (in FH) and 21.16 µmol quinine/l (in AH).


2021 ◽  
Vol 22 (2) ◽  
pp. 825
Author(s):  
Ionut Avramia ◽  
Sonia Amariei

In the brewing process, the consumption of resources and the amount of waste generated are high and due to a lot of organic compounds in waste-water, the capacity of natural regeneration of the environment is exceeded. Residual yeast, the second by-product of brewing is considered to have an important chemical composition. An approach with nutritional potential refers to the extraction of bioactive compounds from the yeast cell wall, such as β-glucans. Concerning the potential food applications with better textural characteristics, spent brewer’s yeast glucan has high emulsion stability and water-holding capacity fitting best as a fat replacer in different food matrices. Few studies demonstrate the importance and nutritional role of β-glucans from brewer’s yeast, and even less for spent brewer’s yeast, due to additional steps in the extraction process. This review focuses on describing the process of obtaining insoluble β-glucans (particulate) from spent brewer’s yeast and provides an insight into how a by-product from brewing can be converted to potential food applications.


1935 ◽  
Vol 29 (4) ◽  
pp. 931-936 ◽  
Author(s):  
Reginald Haydn Hopkins ◽  
Richard Henry Roberts

Sign in / Sign up

Export Citation Format

Share Document