Fractional lion optimization for cluster head-based routing protocol in wireless sensor network

2017 ◽  
Vol 354 (11) ◽  
pp. 4457-4480 ◽  
Author(s):  
Nandakishor Sirdeshpande ◽  
Vishwanath Udupi
Author(s):  
Ikram Daanoune ◽  
Abdennaceur Baghdad ◽  
Abdelhakim Ballouk

Recent few years, Wireless Sensor Network (WSN) has been an increasingly important technology that has been applied in almost all domains, even in complex environments where human activity is impossible. In WSN, various factors are impacted energy consumption, such as communication protocols, packet data transmission, and limited battery. So, the lifespan of the WSNs is limited. In this context, energy efficiency is the factor most attracted by many researchers. In this paper, we proposed a new improved LEACH routing protocol. This proposed protocol based on the current energy to select cluster-heads, and it uses a root cluster-head with more current energy and low distance to the sink to gather all data, then sends it to the sink. The simulation results in MATLAB confirmed that the proposed algorithm performed better than the conventional LEACH protocol, and increased the network lifetime in WSN.


2013 ◽  
Vol 411-414 ◽  
pp. 716-720
Author(s):  
Lei Sang ◽  
Duo Long

Routing protocol is mainly responsible for seeking optimized path between source node and destination node and forwarding data package along the optimized path in a right way, which is a core link in wireless sensor network. In this thesis, a research on WSN routing algorithm based on ant-colony algorithm is done, targeting the features of WSN and on the basis of the analysis of classic routing protocol. Comparison and analysis of the path and convergence rate of cluster head node are done by means of emulated analysis, which is to some extent innovative and significant to research.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lin Li ◽  
Donghui Li

The wireless sensor network is an intelligent self-organizing network which consists of many sensor nodes deployed in the monitoring area. The greatest challenge of designing a wireless sensor network is to balance the energy consumption and prolong the lifetime of the network, seeing that the nodes can be powered only by batteries in most conditions. An energy-balanced routing protocol (EBRP) for wireless sensor networks is proposed in this paper. In EBRP, we divide the network into several clusters by using K-means++ algorithm and select the cluster head by using the fuzzy logical system (FLS). Since the previous researches did not demonstrate how to get the fuzzy rules for different networks, we propose a genetic algorithm (GA) to obtain the fuzzy rules. We code the rules as a chromosome, and the lifetime of the network is treated as a fit function. Then, through the selection, crossover, and mutation of each generation, the best offspring can be decoded as the best rule for each network model. Through the simulation, comparing with the existing routing protocols such as low-energy adaptive clustering hierarchy (LEACH), low-energy adaptive clustering hierarchy-centralized (LEACH-C), and stable election protocol (SEP), the EBRP prolongs the network lifetime (first node dies) by 57%, 63%, and 63%, respectively.


2013 ◽  
Vol 347-350 ◽  
pp. 1738-1742 ◽  
Author(s):  
Xiao Wen Ma ◽  
Xiang Yu

Wireless sensor networks comprise of minor battery driven devices with restricted energy resources.Once installed,the minor sensor nodes are usually unapproachable to the operator, and thus auxiliary of the energy source is not practicable.Hence,energy proficiency is a vital design issue that needs to be boosted in order to increase the lifetime of the network. LEACH is a popular hierarchical routing protocol which efficiently maintains the energy storage of nodes in Wireless Sensor Network (WSN).The nodes using LEACH are divided into clusters.The advantage of LEACH is that each node has the equal probability to be a cluster head,which makes the energy dissipation of each node be relatively balanced. This paper studies LEACH protocol, and focuses on how to decide the next hop nodes more reasonable when the data are transmitted at the steady state. Simulation has been done in NS2 and the results show that the algorithm after improved is more energy-efficient than LEACH protocol.


2021 ◽  
Author(s):  
Ramdas Vankdothu ◽  
Hameed Mohd Abdul

Abstract This paper provides an effective Wireless Sensor Network(WSN) routing solution for Internet of Things(IoT) applications cognizant of congestion, security, and interference. Because several sources try to deliver their packets to a destination simultaneously, which is a common case in IoT applications. The proposed congestion and interference aware safe routing protocol is claimed to work in networks with high traffic. The signal to interference ratio (SINR), congestion level, and survival factor is used in our suggested procedure to estimate the cluster head selection factor first. The adaptive fuzzy c-means clustering method clusters the network nodes based on the cluster head selection factor. After that, data packets are encrypted using Adaptive Quantum Logic-based packet coding. Finally, the Adaptive Krill Herd (AKH) optimization method identifies the least congested corridor, resulting in optimal data transmission routing. The exploratory findings show that the provided strategy outperforms previous methodologies in network performance, end-to-end delay, packet delivery ratio, and node remaining energy level.


Author(s):  
A. Mohamed Divan Masood ◽  
S. K. Muthusundar

<p>Energy  consumption  is  one  of  the  major  issue  in Wireless Sensor Network  (WSN)  which reduces the lifetime of the network. In this developed work an  Cluster based Energy Efficient Routing Protocol (CBEERP) , which is  gathering the sensor hubs  in the system  into  clusters,  in this manner it productively decreased the flooding  traffic  during  discover the routing. The proposed CBEERP will balance the Energy in the Group by using some second order nodes. The reinforcement High effective hubs replace the cluster head after the cluster reaches to its threshold energy level. This CBEERP will help the effectiveness and lifetime of the system.</p>


Sign in / Sign up

Export Citation Format

Share Document