Time-varying multiplicative/additive faults compensation in both actuators and sensors simultaneously for nonlinear systems via robust sliding mode control scheme

2019 ◽  
Vol 356 (1) ◽  
pp. 103-128 ◽  
Author(s):  
A.H. Tahoun
Author(s):  
Sara Dadras ◽  
YangQuan Chen

A robust sliding mode control (SMC) technique is introduced in this paper for a class of fractional order (FO) nonlinear dynamical systems. Using the sliding mode control technique, a sliding surface is determined and the control law is established. A new LMI criterion based on the sliding mode control law is derived to make the states of the FO nonlinear system asymptotically gravitate toward the origin which can work for any order of the system, 0<q<2. The designed control scheme can also control the uncertain FO nonlinear systems, i.e. the controller is robust against the system uncertainty and guarantees the property of asymptotical stability. The advantage of the method is that the control scheme does not depend on the order of systems model and it is fairly simple. So, there is no complexity in the application of our proposed method. An illustrative simulation result is given to demonstrate the effectiveness of the proposed robust sliding mode control design.


Sign in / Sign up

Export Citation Format

Share Document