scholarly journals Multi-objective optimal design of inerter-based vibration absorbers for earthquake protection of multi-storey building structures

2019 ◽  
Vol 356 (14) ◽  
pp. 7754-7784 ◽  
Author(s):  
A.A. Taflanidis ◽  
A. Giaralis ◽  
D. Patsialis
Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2261
Author(s):  
Evgeniy Ganev ◽  
Boyan Ivanov ◽  
Natasha Vaklieva-Bancheva ◽  
Elisaveta Kirilova ◽  
Yunzile Dzhelil

This study proposes a multi-objective approach for the optimal design of a sustainable Integrated Biodiesel/Diesel Supply Chain (IBDSC) based on first- (sunflower and rapeseed) and second-generation (waste cooking oil and animal fat) feedstocks with solid waste use. It includes mixed-integer linear programming (MILP) models of the economic, environmental and social impact of IBDSC, and respective criteria defined in terms of costs. The purpose is to obtain the optimal number, sizes and locations of bio-refineries and solid waste plants; the areas and amounts of feedstocks needed for biodiesel production; and the transportation mode. The approach is applied on a real case study in which the territory of Bulgaria with its 27 districts is considered. Optimization problems are formulated for a 5-year period using either environmental or economic criteria and the remainder are defined as constraints. The obtained results show that in the case of the economic criterion, 14% of the agricultural land should be used for sunflower and 2% for rapeseed cultivation, while for the environmental case, 12% should be used for rapeseed and 3% for sunflower. In this case, the price of biodiesel is 14% higher, and the generated pollutants are 6.6% lower. The optimal transport for both cases is rail.


2013 ◽  
Vol 40 (7) ◽  
pp. 655-662
Author(s):  
George K. Georgoussis

Building structures of low or medium height are usually designed with a pseudostatic approach using a base shear much lower than that predicted from an elastic spectrum. Given this shear force, the objective of this paper is to evaluate the effect of the element strength assignment (as determined by several building codes) on the torsional response of inelastic single-storey eccentric structures and to provide guidelines for minimizing this structural behaviour. It is demonstrated that the expected torque about the centre of mass (CM) may be, with equal probability, positive (counterclockwise) or negative (clockwise). This result means that the torsional strength should also be provided in equal terms in both rotational directions, and therefore the base shear and torque (BST) surface of a given system must be symmetrical (or approximately symmetrical). In stiffness-eccentric systems, appropriate BST surfaces may be obtained when a structural design is based on a pair of design eccentricities in a symmetrical order about CM, and this is shown in representative single-storey building models under characteristic ground motions.


Author(s):  
Hailin Huang ◽  
Bing Li ◽  
Zongquan Deng ◽  
Rongqiang Liu

Author(s):  
A. Sarhadi ◽  
M. Tahani ◽  
F. Kolahan ◽  
M. Sarhadi

Multi-objective optimal design of sandwich composite laminates consisting of high stiffness and expensive surface layers and low-stiffness and inexpensive core layer is addressed in this paper. The object is to determine ply angles and number of surface layers and core thickness in such way that natural frequency is maximized with minimal material cost and weight. A simulated annealing algorithm with finite element method is used for simultaneous cost and weight minimization and frequency maximization. The proposed procedure is applied to Graphite-Epoxy/Glass-Epoxy and Graphite-epoxy/Aluminum sandwich laminates and results are obtained for various boundary conditions and aspect ratios. Results show that this technique is useful in designing of effective, competitive and light composite structures.


Sign in / Sign up

Export Citation Format

Share Document