Composite finite-time straight-line path-following control of an underactuated surface vessel

2020 ◽  
Vol 357 (16) ◽  
pp. 11496-11517 ◽  
Author(s):  
Qiankang Hou ◽  
Li Ma ◽  
Shihong Ding ◽  
Xiaofei Yang ◽  
Xiangyong Chen
2020 ◽  
Vol 10 (18) ◽  
pp. 6447
Author(s):  
Mingyu Fu ◽  
Lulu Wang

This paper develops a finite-time path following control scheme for an underactuated marine surface vessel (MSV) with external disturbances, model parametric uncertainties, position constraint and input saturation. Initially, based on the time-varying barrier Lyapunov function (BLF), the finite-time line-of-sight (FT-LOS) guidance law is proposed to obtain the desired yaw angle and simultaneously constrain the position error of the underactuated MSV. Furthermore, the finite-time path following constraint controllers are designed to achieve tracking control in finite time. Additionally, considering the model parametric uncertainties and external disturbances, the finite-time disturbance observers are proposed to estimate the compound disturbance. For the sake of avoiding the input saturation and satisfying the requirements of finite-time convergence, the finite-time input saturation compensators were designed. The stability analysis shows that the proposed finite-time path following control scheme can strictly guarantee the constraint requirements of the position, and all error signals of the whole control system can converge into a small neighborhood around zero in finite time. Finally, comparative simulation results show the effectiveness and superiority of the proposed finite-time path following control scheme.


2011 ◽  
Vol 48-49 ◽  
pp. 391-396
Author(s):  
Yu Long Ma ◽  
Jian Da Han ◽  
Yu Qing He

Unmanned surface vehicle (USV) system has been one of main research directions in mobile robotics because it can be used in many situations. However, high performance path following control, especially straight line tracking control, has been one of the difficult problems in autonomous control of USV system. In this paper, we propose a new straight line path following control algorithm by combining yaw angle feedback and back-stepping technique and show its closed loop stability. The most absorbing advantage of the proposed controller is that it not only reserve the good performance of back-stepping controller but also bring much faster convergent rate, which is very important in real applications. The simulation results with respect to a training ship model have shown the feasibility and validity of the proposed method.


2017 ◽  
Vol 40 (12) ◽  
pp. 3477-3488 ◽  
Author(s):  
Chuan Hu ◽  
Rongrong Wang ◽  
Fengjun Yan ◽  
Mohammed Chadli ◽  
Yanjun Huang ◽  
...  

This paper presents a fast and accurate robust path-following control approach for a fully actuated marine surface vessel in the presence of external disturbances. The path following is realized by simultaneously converging the yaw rate and sway velocity to their respective desired values, which are generated according to the path-following demand. An improved combined control strategy using an integral terminal sliding mode (ITSM) based composite nonlinear feedback (CNF) technique considering the external disturbances, time-varying tracking reference, input saturations and transient performance improvement is proposed in this study. The proposed ITSM-CNF combines the advantages of the CNF control in improving the transient performance and of the ITSM control in guaranteeing good robustness and finite-time convergence. A continuous and smooth sliding mode controller, based on an integral nonsingular terminal sliding surface, is added to the CNF controller to eliminate chattering. The overall stability of the closed-loop system is strictly proved based on the Lyapunov method. Simulations verify the effectiveness of the ITSM-CNF controller in improving the transient path-following performance, inhibiting overshoots, eliminating steady-state errors, rejecting external disturbances and removing chattering effects, considering input saturations, varying path curvature and finite-time convergence.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Jawhar Ghommam ◽  
Lamia Iftekhar ◽  
Maarouf Saad

Abstract This paper considers the finite time path-following control problem for an underactuated surface vessel subject to parametric uncertainties, unknown disturbances, and involving input-control saturation. A finite time command filtered backstepping approach is adopted as the main control framework along with the first-order sliding mode differentiator introduced to compute the derivatives of virtual control laws, and the analytical computational burden in the backstepping control is reduced for the design of the control for the underactuated surface vessel. A rigorous proof of the finite time stability of the closed-loop system is derived by utilizing the Lyapunov method. Furthermore, in order to avoid obstacles, a local path replanning technique is designed based on a repulsive potential function that acts directly on the original desired path. The effectiveness of the proposed strategy is validated through numerical simulations.


Author(s):  
Taotao Liang ◽  
Qiaozhi Yin ◽  
Xiaohui Wei

The paper deals with straight-line path-following control design for the aircraft equipped with skid landing gears. First, a simple yet accurate on-ground aircraft model is established, which takes into account the effects of the aerodynamic and ground forces. To improve the directional stability of the aircraft during the roll-out phase, a novel skid with variable friction coefficients is proposed. Second, the path-following problem is converted to the attitude control problem by constructing a guiding vector field that generates the commanded course, and then an improved error function is proposed to manage the trade-off between the convergence rate and the strong lateral maneuvers. To achieve a good performance in path following, the incremental nonlinear control allocation is applied to make full use of three available actuators (nose wheel, variable friction skid, and rudder). The expected path here is the runway centerline so as to avoid runway excursions. Finally, the effectiveness and robustness of the path-following control are validated on different initial conditions. Results show that the proposed skid structure and control scheme are propitious to enhancing the resistance to crosswind. Moreover, the maximum lateral displacement during the path-following process decreases, especially in the low-speed region.


2019 ◽  
Vol 9 (9) ◽  
pp. 1815 ◽  
Author(s):  
Yunsheng Fan ◽  
Hongyun Huang ◽  
Yuanyuan Tan

This paper investigates the path following control problem of an unmanned surface vessel (USV) subject to input saturation and uncertainties including model parameters uncertainties and unknown time-varying external disturbances. A nonlinear robust adaptive control scheme is proposed to address the issue, more specifically, steering a USV to follow the desired path at a certain velocity assignment despite the involved disturbances, by utilizing the finite-time currents observer based line-of-sight (LOS) guidance and radial basis function neural networks (RBFNN). Backstepping and Lyapunov’s direct method are the main design frameworks. Based on the finite-time currents observer and adaptive control technique, an improved LOS guidance law is proposed to obtain the desired approaching angle to the desired path, making compensations for the effects of unknown time-varying ocean currents. Then, a kinetic controller with the capability of uncertainties estimation and disturbances rejection is proposed based on the RBFNNs, where the adaptive laws including leakage terms estimate the approximation error and the unknown time-varying disturbances. Subsequently, sophisticated auxiliary control systems are employed to handle input saturation constraints of actuators. All error signals of the closed-loop system are proved to be locally uniformly ultimately bounded (UUB). Numerical simulations demonstrated the effectiveness and robustness of the proposed path following control method.


2021 ◽  
pp. 1-30
Author(s):  
A. Guo ◽  
Z. Zhou ◽  
R. Wang ◽  
X. Zhao ◽  
X. Zhu

Abstract The full-wing solar-powered UAV has a large aspect ratio, special configuration, and excellent aerodynamic performance. This UAV converts solar energy into electrical energy for level flight and storage to improve endurance performance. The UAV only uses a differential throttle for lateral control, and the insufficient control capability during crosswind landing results in a large lateral distance bias and leads to multiple landing failures. This paper analyzes 11 landing failures and finds that a large lateral distance bias at the beginning of the approach and the coupling of base and differential throttle control is the main reason for multiple landing failures. To improve the landing performance, a heading angle-based vector field (VF) method is applied to the straight-line and orbit paths following and two novel 3D Dubins landing paths are proposed to reduce the initial lateral control bias. The results show that the straight-line path simulation exhibits similar phenomenon with the practical failure; the single helical path has the highest lateral control accuracy; the left-arc to left-arc (L-L) path avoids the saturation of the differential throttle; and both paths effectively improve the probability of successful landing.


Sign in / Sign up

Export Citation Format

Share Document