Corrigendum to “katG Ser315 and rpoB 81-bp hotspot region substitutions: Reliability for detection of drug-resistant strains of Mycobacterium tuberculosis” [J. Global Antimicrob. Resist. 5 (2016) 92–93]

2016 ◽  
Vol 6 ◽  
pp. 172
Author(s):  
Mohammad Javad Nasiri ◽  
Davood Darban-Sarokhalil ◽  
Abbas Ali Imani Fooladi ◽  
Mohammad Mehdi Feizabadi
2015 ◽  
Vol 36 ◽  
pp. 23-26 ◽  
Author(s):  
Jalil Kardan Yamchi ◽  
Mehri Haeili ◽  
Seifu Gizaw Feyisa ◽  
Hossein Kazemian ◽  
Abdolrazagh Hashemi Shahraki ◽  
...  

2019 ◽  
Vol 11 (16) ◽  
pp. 2193-2203
Author(s):  
Rafal Sawicki ◽  
Grazyna Ginalska

The significant increase in the detection of drug-resistant strains of Mycobacterium tuberculosis caused an urgent need for the discovery new antituberculosis drugs. Development of bioinformatics and computational sciences enabled the progress of new strategies leading to design, discovery and identification of a series of interesting drug candidates. In this short review, we would like to present recently discovered compounds targeting important mycobacterial proteins: DNA topoisomerases and the transcriptional repressor of EthA monooxygenase – EthR.


2017 ◽  
Vol 62 (1) ◽  
Author(s):  
Manoon Leechawengwongs ◽  
Therdsak Prammananan ◽  
Sarinya Jaitrong ◽  
Pamaree Billamas ◽  
Nampueng Makhao ◽  
...  

ABSTRACT New fluoroquinolones (FQs) have been shown to be more active against drug-resistant Mycobacterium tuberculosis strains than early FQs, such as ofloxacin. Sitafloxacin (STFX) is a new fluoroquinolone with in vitro activity against a broad range of bacteria, including M. tuberculosis. This study aimed to determine the in vitro activity of STFX against all groups of drug-resistant strains, including multidrug-resistant M. tuberculosis (MDR M. tuberculosis), MDR M. tuberculosis with quinolone resistance (pre-XDR), and extensively drug-resistant (XDR) strains. A total of 374 drug-resistant M. tuberculosis strains were tested for drug susceptibility by the conventional proportion method, and 95 strains were randomly submitted for MIC determination using the microplate alamarBlue assay (MABA). The results revealed that all the drug-resistant strains were susceptible to STFX at a critical concentration of 2 μg/ml. Determination of the MIC90s of the strains showed different MIC levels; MDR M. tuberculosis strains had a MIC90 of 0.0625 μg/ml, whereas pre-XDR and XDR M. tuberculosis strains had identical MIC90s of 0.5 μg/ml. Common mutations within the quinolone resistance-determining region (QRDR) of gyrA and/or gyrB did not confer resistance to STFX, except that double mutations of GyrA at Ala90Val and Asp94Ala were found in strains with a MIC of 1.0 μg/ml. The results indicated that STFX had potent in vitro activity against all the groups of drug-resistant M. tuberculosis strains and should be considered a new repurposed drug for treatment of multidrug-resistant and extensively drug-resistant TB.


2017 ◽  
Vol 95 (7) ◽  
pp. 33-39
Author(s):  
O. A. Pasechnik ◽  
◽  
A. M. Dymova ◽  
V. L. Stasenko ◽  
M. P. Tatarintseva ◽  
...  

Author(s):  
Rashmi S Mudliar ◽  
Umay Kulsum ◽  
Syed Beenish Rufai ◽  
Mika Umpo ◽  
Moi Nyori ◽  
...  

Uncontrolled transmission of Mycobacterium tuberculosis (M. tuberculosis, MTB) drug resistant strains is a challenge to control efforts of global tuberculosis programme. Due to increasing multi-drug resistant (MDR) cases in Arunachal Pradesh, a northeastern state of India, the tracking and tracing of these resistant MTB strains is crucial for infection control and spread of drug resistance. This study aims to correlate the phenotypic DST, genomic DST (gDST) and phylogenetic analysis of MDR-MTB strains in the region. Of total 200 suspected MDR-MTB isolates, 125(62.5%) were identified as MTB. MGIT-960 SIRE DST detected 71/125(56.8%) isolates as MDR/RR-MTB of which 22(30.9%) were detected resistant to second line drugs. Whole genome sequencing of 65 isolates and their gDST found Ser315Thr mutation in katG (35/45;77.8%) and Ser531Leu mutation in rpoB (21/41;51.2%) associated with drug resistance. SNP barcoding categorized the dataset with Lineage2 (41;63.1%) being predominant followed by Lineage3 (10;15.4%), Lineage1 (8;12.3%) and Lineage4 (6;9.2%) respectively. Phylogenetic assignment by cgMLST gave insights of two Beijing sub-lineages viz; 2.2.1 (SNP difference < 19) and 2.2.1.2 (SNP difference < 9) associated with recent ongoing transmission in Arunachal Pradesh. This study provides first insight in identifying the ongoing transmission of two virulent Beijing sub-lineages associated with TB drug resistance.


Sign in / Sign up

Export Citation Format

Share Document