scholarly journals Cloning and expression of MPT83 gene from Mycobacterium tuberculosis in E. coli BL21 as vaccine candidate of tuberculosis: A preliminary study

2018 ◽  
Vol 16 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Ahyar Ahmad ◽  
Rosana Agus ◽  
Muh. Nasrum Massi ◽  
Rosdiana Natzir ◽  
Radha Madhyastha ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 394
Author(s):  
Mariia Sergeeva ◽  
Ekaterina Romanovskaya-Romanko ◽  
Natalia Zabolotnyh ◽  
Anastasia Pulkina ◽  
Kirill Vasilyev ◽  
...  

New strategies providing protection against tuberculosis (TB) are still pending. The airborne nature of Mycobacterium tuberculosis (M.tb) infection assumes that the mucosal delivery of the TB vaccine could be a more promising strategy than the systemic route of immunization. We developed a mucosal TB vaccine candidate based on recombinant attenuated influenza vector (Flu/THSP) co-expressing truncated NS1 protein NS1(1–124) and a full-length TB10.4 and HspX proteins of M.tb within an NS1 protein open reading frame. The Flu/THSP vector was safe and stimulated a systemic TB-specific CD4+ and CD8+ T-cell immune response after intranasal immunization in mice. Double intranasal immunization with the Flu/THSP vector induced protection against two virulent M.tb strains equal to the effect of BCG subcutaneous injection in mice. In a guinea pig TB model, one intranasal immunization with Flu/THSP improved protection against M.tb when tested as a vaccine candidate for boosting BCG-primed immunity. Importantly, enhanced protection provided by a heterologous BCG-prime → Flu/THSP vector boost immunization scheme was associated with a significantly reduced lung and spleen bacterial burden (mean decrease of 0.77 lg CFU and 0.72 lg CFU, respectively) and improved lung pathology 8.5 weeks post-infection with virulent M.tb strain H37Rv.


2014 ◽  
Vol 185 ◽  
pp. S70
Author(s):  
Boguslaw Lupa ◽  
Krzysztof Stawujak ◽  
Igor Rozanski ◽  
Justyna Stec-Niemczyk

1985 ◽  
Vol 95 (3) ◽  
pp. 611-618
Author(s):  
Naomi Datta

SUMMARYThe study of Escherichia coli and its plasmids and bacteriophages has provided a vast body of genetical information, much of it relevant to the whole of biology. This was true even before the development of the new techniques, for cloning and analysing DNA, that have revolutionized biological research during the past decade. Thousands of millions of dollars are now invested in industrial uses of these techniques, which all depend on discoveries made in the course of academic research on E. coli. Much of the background of knowledge necessary for the cloning and expression of genetically engineered information, as well as the techniques themselves, came from work with this organism.


1989 ◽  
Vol 35 (4) ◽  
pp. 487-491 ◽  
Author(s):  
Paul H. Goodwin

Xylella fastidiosa DNA, partially digested with Sau3A, was ligated into the cosmid vector, pUCD615. Approximately 4500 ampicillin-resistant Escherichia coli colonies were obtained. The frequency of complementation of leucine auxotrophy in transfected E. coli indicated that the cosmid gene bank was representative of X. fastidiosa genomic DNA. Colonies were lysed directly onto nitrocellulose membranes using a thermo-inducible λ lysogen and screened for expression of X. fastidiosa antigens. Approximately 16.5% of a random sample of clones were found to express X. fastidiosa antigens as determined by Western blots. These proteins comigrated with proteins of X. fastidiosa and ranged in molecular weight from 10 000 to 160 000. Conjugation of several of the plasmids into Erwinia stewartii resulted in expression of the similar molecular weight cloned proteins with similar levels of expression as in E. coli.Key words: Xylella fastidiosa, Pierce's disease, immunological clone screening, thermo-inducible lysogeny.


Sign in / Sign up

Export Citation Format

Share Document