scholarly journals Escherichia coli as a genetic tool

1985 ◽  
Vol 95 (3) ◽  
pp. 611-618
Author(s):  
Naomi Datta

SUMMARYThe study of Escherichia coli and its plasmids and bacteriophages has provided a vast body of genetical information, much of it relevant to the whole of biology. This was true even before the development of the new techniques, for cloning and analysing DNA, that have revolutionized biological research during the past decade. Thousands of millions of dollars are now invested in industrial uses of these techniques, which all depend on discoveries made in the course of academic research on E. coli. Much of the background of knowledge necessary for the cloning and expression of genetically engineered information, as well as the techniques themselves, came from work with this organism.

2019 ◽  
Vol 366 (24) ◽  
Author(s):  
Yan Ge ◽  
Senlin Guo ◽  
Tao Liu ◽  
Chen Zhao ◽  
Duanhua Li ◽  
...  

ABSTRACT A nuclease from Yersinia enterocolitica subsp. palearctica (Nucyep) is a newly found thermostable nonspecific nuclease. The heat-resisting ability of this nuclease would be extremely useful in biological research or pharmaceutical production. However, the application of this nuclease is limited because of its poor yield. This research aimed to improve Nucyep productivity by producing a novel genetically engineered Escherichia coli and optimizing the production procedures. After 4 h of induction by lactose, the new genetically engineered E. coli can express a substantial amount of Nucyep in the form of inclusion bodies. The yield was approximately 0.3 g of inclusion bodies in 1 g of bacterial pellets. The inclusion bodies were extracted by sonication and solubilized in an 8 M urea buffer. Protein renaturation was successfully achieved by dilution method. Pure enzyme was obtained after subjecting the protein solution to anion exchange. The Nucyep showed its nonspecific and heat resistant properties as previously reported (Boissinot et  al. 2016). Through a quantification method, its activity was determined to be 1.3 × 10 6 Kunitz units (K.U.)/mg. These results can serve as a reference for increasing Nucyep production.


2020 ◽  
Vol 14 (2) ◽  
pp. 121-133 ◽  
Author(s):  
Maryam Ahankoub ◽  
Gashtasb Mardani ◽  
Payam Ghasemi-Dehkordi ◽  
Ameneh Mehri-Ghahfarrokhi ◽  
Abbas Doosti ◽  
...  

Background: Genetically engineered microorganisms (GEMs) can be used for bioremediation of the biological pollutants into nonhazardous or less-hazardous substances, at lower cost. Polycyclic aromatic hydrocarbons (PAHs) are one of these contaminants that associated with a risk of human cancer development. Genetically engineered E. coli that encoded catechol 2,3- dioxygenase (C230) was created and investigated its ability to biodecomposition of phenanthrene and pyrene in spiked soil using high-performance liquid chromatography (HPLC) measurement. We revised patents documents relating to the use of GEMs for bioremediation. This approach have already been done in others studies although using other genes codifying for same catechol degradation approach. Objective: In this study, we investigated biodecomposition of phenanthrene and pyrene by a genetically engineered Escherichia coli. Methods: Briefly, following the cloning of C230 gene (nahH) into pUC18 vector and transformation into E. coli Top10F, the complementary tests, including catalase, oxidase and PCR were used as on isolated bacteria from spiked soil. Results: The results of HPLC measurement showed that in spiked soil containing engineered E. coli, biodegradation of phenanthrene and pyrene comparing to autoclaved soil that inoculated by wild type of E. coli and normal soil group with natural microbial flora, were statistically significant (p<0.05). Moreover, catalase test was positive while the oxidase tests were negative. Conclusion: These findings indicated that genetically manipulated E. coli can provide an effective clean-up process on PAH compounds and it is useful for bioremediation of environmental pollution with petrochemical products.


1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


2003 ◽  
Vol 228 (4) ◽  
pp. 331-332 ◽  
Author(s):  
Hussein S. Hussein ◽  
Stanley T. Omaye

Verotoxin-producing Escherichia coli (VTEC) have emerged in the past two decades as food-borne pathogens that can cause major outbreaks of human illnesses worldwide. The number of outbreaks has increased in recent years due to changes in food production and processing systems, eating habits, microbial adaptation, and methods of VTEC transmission. The human illnesses range from mild diarrhea to hemolytic uremic syndrome (HUS) that can lead to death. The VTEC outbreaks have been attributed to O157:H7 and non-O157:H7 serotypes of E. coli. These E. coli serotypes include motile (e.g., O26:H11 and O104:H21) and nonmotile (e.g., O111:H–,0145:H–, and O157:H–) strains. In the United States, E. coli O157:H7 has been the major cause of VTEC outbreaks. Worldwide, however, non-O157:H7 VTEC (e.g., members of the 026, O103, O111, O118, O145, and O166 serogroups) have caused approximately 30% of the HUS cases in the past decade. Because large numbers of the VTEC outbreaks have been attributed to consumption of ruminant products (e.g., ground beef), cattle and sheep are considered reservoirs of these food-borne pathogens. Because of the food safety concern of VTEC, a global perspective on this problem is addressed (Exp Biol Med Vol. 228, No. 4). The first objective was to evaluate the known non-O157:H7 VTEC strains and the limitations associated with their detection and characterization. The second objective was to identify the VTEC serotypes associated with outbreaks of human illnesses and to provide critical evaluation of their virulence. The third objective was to determine the rumen effect on survival of E. coli O157:H7 as a VTEC model. The fourth objective was to explore the role of intimins in promoting attaching and effacing lesions in humans. Finally, the ability of VTEC to cause persistent infections in cattle was evaluated.


1989 ◽  
Vol 35 (4) ◽  
pp. 487-491 ◽  
Author(s):  
Paul H. Goodwin

Xylella fastidiosa DNA, partially digested with Sau3A, was ligated into the cosmid vector, pUCD615. Approximately 4500 ampicillin-resistant Escherichia coli colonies were obtained. The frequency of complementation of leucine auxotrophy in transfected E. coli indicated that the cosmid gene bank was representative of X. fastidiosa genomic DNA. Colonies were lysed directly onto nitrocellulose membranes using a thermo-inducible λ lysogen and screened for expression of X. fastidiosa antigens. Approximately 16.5% of a random sample of clones were found to express X. fastidiosa antigens as determined by Western blots. These proteins comigrated with proteins of X. fastidiosa and ranged in molecular weight from 10 000 to 160 000. Conjugation of several of the plasmids into Erwinia stewartii resulted in expression of the similar molecular weight cloned proteins with similar levels of expression as in E. coli.Key words: Xylella fastidiosa, Pierce's disease, immunological clone screening, thermo-inducible lysogeny.


2007 ◽  
Vol 90 (2-3) ◽  
pp. 59-72 ◽  
Author(s):  
Medhatm Khattar ◽  
Issmat I. Kassem ◽  
Ziad W. El-Hajj

In 1993, William Donachie wrote “The success of molecular genetics in the study of bacterial cell division has been so great that we find ourselves, armed with much greater knowledge of detail, confronted once again with the same naive questions that we set to answer in the first place”1. Indeed, attempts to answer the apparently simple question of how a bacterial cell divides have led to a wealth of new knowledge, in particular over the past decade and a half. And while some questions have been answered to a great extent since the early reports of isolation of division mutants of Escherichia coli2,3, some key pieces of the puzzle remain elusive. In addition to it being a fundamental process in bacteria that merits investigation in its own right, studying the process of cell division offers an abundance of new targets for the development of new antibacterial compounds that act directly against key division proteins and other components of the cytoskeleton, which are encoded by the morphogenes of E. coli4. This review aims to present the reader with a snapshot summary of the key players in E. coli morphogenesis with emphasis on cell division and the rod to sphere transition.


2007 ◽  
Vol 56 (1) ◽  
pp. 4-8 ◽  
Author(s):  
Andrej Weintraub

Enteroaggregative Escherichia coli (EAEC) is a subgroup of diarrhoeagenic E. coli (DEC) that during the past decade has received increasing attention as a cause of watery diarrhoea, which is often persistent. EAEC have been isolated from children and adults worldwide. As well as sporadic cases, outbreaks of EAEC-caused diarrhoea have been described. The definition of EAEC is the ability of the micro-organism to adhere to epithelial cells such as HEp-2 in a very characteristic ‘stacked-brick’ pattern. Although many studies searching for specific virulence factor(s) unique for this category of DEC have been published it is still unknown why the EAEC cause persistent diarrhoea. In addition, the aggregative property of EAEC causes a lot of problems in serotyping due to the cells auto-agglutinating. The gold standard for identification of EAEC includes isolation of the agent and an adherence assay using tissue culture, viz. HEp-2 cells. This assay is in most cases reliable; however, emergence of ‘atypical’ EAEC has been described in several publications. In addition, the HEp-2 assay is time consuming, demands a tissue culture lab and trained staff. Several molecular biological assays have been described, however, none show 100 % specificity.


2009 ◽  
Vol 75 (18) ◽  
pp. 5853-5862 ◽  
Author(s):  
K. Liu ◽  
S. J. Knabel ◽  
E. G. Dudley

ABSTRACT DNA sequence-based molecular subtyping methods such as multilocus sequence typing (MLST) are commonly used to generate phylogenetic inferences for monomorphic pathogens. The development of an effective MLST scheme for subtyping Escherichia coli O157:H7 has been hindered in the past due to the lack of sequence variation found within analyzed housekeeping and virulence genes. A recent study suggested that rhs genes are under strong positive selection pressure, and therefore in this study we analyzed these genes within a diverse collection of E. coli O157:H7 strains for sequence variability. Eighteen O157:H7 strains from lineages I and II and 15 O157:H7 strains from eight clades were included. Examination of these rhs genes revealed 44 polymorphic loci (PL) and 10 sequence types (STs) among the 18 lineage strains and 280 PL and 12 STs among the 15 clade strains. Phylogenetic analysis using rhs genes generally grouped strains according to their known lineage and clade classifications. These findings also suggested that O157:H7 strains from clades 6 and 8 fall into lineage I/II and that strains of clades 1, 2, 3, and 4 fall into lineage I. Additionally, unique markers were found in rhsA and rhsJ that might be used to define clade 8 and clade 6. Therefore, rhs genes may be useful markers for phylogenetic analysis of E. coli O157:H7.


2015 ◽  
Vol 184 ◽  
pp. 425-450 ◽  
Author(s):  
Jacek T. Mika ◽  
Aster Vanhecke ◽  
Peter Dedecker ◽  
Toon Swings ◽  
Jeroen Vangindertael ◽  
...  

Escherichia coli (E. coli) cells replicate their genome once per cell cycle to pass on genetic information to the daughter cells. The SeqA protein binds the origin of replication, oriC, after DNA replication initiation and sequesters it from new initiations in order to prevent overinitiation. Conventional fluorescence microscopy studies of SeqA localization in bacterial cells have shown that the protein is localized to discrete foci. In this study we have used photo-activated localization microscopy (PALM) to determine the localization of SeqA molecules, tagged with fluorescent proteins, with a localization precision of 20–30 nm with the aim to visualize the SeqA subcellular structures in more detail than previously possible. SeqA–PAmCherry was imaged in wild type E. coli, expressed from plasmid or genetically engineered into the bacterial genome, replacing the native seqA gene. Unsynchronized cells as well as cells with a synchronized cell cycle were imaged at various time points, in order to investigate the evolution of SeqA localization during the cell cycle. We found that SeqA indeed localized into discrete foci but these were not the only subcellular localizations of the protein. A significant amount of SeqA–PAmCherry molecules was localized outside the foci and in a fraction of cells we saw patterns indicating localization at the membrane. Using quantitative PALM, we counted protein copy numbers per cell, protein copy numbers per focus, the numbers of foci per cell and the sizes of the SeqA clusters. The data showed broad cell-to-cell variation and we did not observe a correlation between SeqA–PAmCherry protein numbers and the cell cycle under the experimental conditions of this study. The numbers of SeqA–PAmCherry molecules per focus as well as the foci sizes also showed broad distributions indicating that the foci are likely not characterized by a fixed number of molecules. We also imaged an E. coli strain devoid of the dam methylase (Δdam) and observed that SeqA–PAmCherry no longer formed foci, and was dispersed throughout the cell and localized to the plasma membrane more readily. We discuss our results in the context of the limitations of the technique.


Sign in / Sign up

Export Citation Format

Share Document