Identification of quantitative trait loci associated with salt tolerance at seedling stage from Oryza rufipogon

2011 ◽  
Vol 38 (12) ◽  
pp. 593-601 ◽  
Author(s):  
Lei Tian ◽  
Lubin Tan ◽  
Fengxia Liu ◽  
Hongwei Cai ◽  
Chuanqing Sun
Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 33 ◽  
Author(s):  
Md. Islam ◽  
John Ontoy ◽  
Prasanta Subudhi

Soil and water salinity is one of the major abiotic stresses that reduce growth and productivity in major food crops including rice. The lack of congruence of salt tolerance quantitative trait loci (QTLs) in multiple genetic backgrounds and multiple environments is a major hindrance for undertaking marker-assisted selection (MAS). A genome-wide meta-analysis of QTLs controlling seedling-stage salt tolerance was conducted in rice using QTL information from 12 studies. Using a consensus map, 11 meta-QTLs for three traits with smaller confidence intervals were localized on chromosomes 1 and 2. The phenotypic variance of 3 meta-QTLs was ≥20%. Based on phenotyping of 56 diverse genotypes and breeding lines, six salt-tolerant genotypes (Bharathy, I Kung Ban 4-2 Mutant, Langmanbi, Fatehpur 3, CT-329, and IARI 5823) were identified. The perusal of the meta-QTL regions revealed several candidate genes associated with salt-tolerance attributes. The lack of association between meta-QTL linked markers and the level of salt tolerance could be due to the low resolution of meta-QTL regions and the genetic complexity of salt tolerance. The meta-QTLs identified in this study will be useful not only for MAS and pyramiding, but will also accelerate the fine mapping and cloning of candidate genes associated with salt-tolerance mechanisms in rice.


Plant Science ◽  
2006 ◽  
Vol 170 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Yanjun Dong ◽  
H. Kamiuten ◽  
Zhongnan Yang ◽  
Dongzhi Lin ◽  
T. Ogawa ◽  
...  

Euphytica ◽  
2017 ◽  
Vol 213 (6) ◽  
Author(s):  
Jingyi Guo ◽  
Guangdeng Chen ◽  
Xizhou Zhang ◽  
Tingxuan Li ◽  
Haiying Yu ◽  
...  

Euphytica ◽  
2014 ◽  
Vol 201 (3) ◽  
pp. 401-409 ◽  
Author(s):  
Wenqiang Liu ◽  
Tingting Lu ◽  
Yongchao Li ◽  
Xiaowu Pan ◽  
Yonghong Duan ◽  
...  

Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 620
Author(s):  
Noppawan Nounjan ◽  
Wuttipong Mahakham ◽  
Jonaliza L. Siangliw ◽  
Theerayut Toojinda ◽  
Piyada Theerakulpisut

Jasmine rice (Oryza sativa L.), or Khao Dawk Mali 105 (KDML105), is sensitive to drought and salt stresses. In this study, two improved drought-tolerant chromosome segment substitution lines (CSSLs) of KDML105 (CSSL8-103 and CSSL8-106), which carry drought tolerance quantitative trait loci (QTLs) on chromosome 8, were evaluated for salt tolerance and were compared with KDML105 and the QTL donor DH103, their parents and the salt-tolerant genotype Pokkali. After being subjected to salt stress for 6 days, 3-week-old seedlings of Pokkali showed the highest salt tolerance. Parameters related to photosynthesis were less inhibited in both CSSLs and the donor DH103, while these parameters were more severely damaged in the recurrent parent KDML105. Albeit a high ratio of Na+/K+, CSSLs and DH103 showed similar or higher contents of soluble sugar and activity of superoxide dismutase (SOD; EC1.15.1.1) compared with Pokkali, indicating possible mechanisms of either tissue or osmotic tolerance in these plants. The expression of a putative gene Os08g41990 (aminotransferase), which is located in DT-QTL and is involved in chlorophyll biosynthesis, significantly decreased under salt stress in KDML105 and CSSL8-103, while no obvious change in the expression of this gene was observed in Pokkali, DH103 and CSSL8-106. This gene might play a role in maintaining chlorophyll content under stress conditions. Taken together, the results of this study indicate that DT-QTL could contribute to the enhancement of photosynthetic performance in CSSL lines, leading to changes in their physiological ability to tolerate salinity stress.


2009 ◽  
Vol 35 (2) ◽  
pp. 301-308
Author(s):  
Dong-Ling QI ◽  
Gui-Zhen GUO ◽  
Myung-Chul LEE ◽  
Chun-Gang YANG ◽  
Jun-Guo ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document