Recovery of metals from waste printed circuit boards by a mechanical method using a water medium

2009 ◽  
Vol 166 (1) ◽  
pp. 478-482 ◽  
Author(s):  
Chenlong Duan ◽  
Xuefeng Wen ◽  
Changsheng Shi ◽  
Yuemin Zhao ◽  
Baofeng Wen ◽  
...  
2014 ◽  
Vol 666 ◽  
pp. 383-387
Author(s):  
Ya Wei Yang ◽  
Fu Wei Sun ◽  
Zhan Xu Tie

Waste printed circuit boards is one of the main electronic waste,which has serious pollution,it has valuable metal and nometal.So its processing method is a very complex problem.There are a variety of recovery methods since the birth of waste printed circuit boards,and the most widely used method is mechanical method,which is practical and avoids the problem of environmental pollution.This article describes the recovery process of mechanical method of recycling waste printed circuit boards and the equipment used, and summarizes the status quo of mechanical method of recycling waste printed circuit boards in China and abroad.


2014 ◽  
Vol 13 (10) ◽  
pp. 2601-2607 ◽  
Author(s):  
Jae-chun Lee ◽  
Manoj Kumar ◽  
Min-Seuk Kim ◽  
Jinki Jeong ◽  
Kyoungkeun Yoo

JOM ◽  
2020 ◽  
Author(s):  
Joona Rajahalme ◽  
Siiri Perämäki ◽  
Roshan Budhathoki ◽  
Ari Väisänen

AbstractThis study presents an optimized leaching and electrowinning process for the recovery of copper from waste printed circuit boards including studies of chemical consumption and recirculation of leachate. Optimization of leaching was performed using response surface methodology in diluted sulfuric acid and hydrogen peroxide media. Optimum leaching conditions for copper were found by using 3.6 mol L−1 sulfuric acid, 6 vol.% hydrogen peroxide, pulp density of 75 g L−1 with 186 min leaching time at 20°C resulting in complete leaching of copper followed by over 92% recovery and purity of 99.9% in the electrowinning. Study of chemical consumption showed total decomposition of hydrogen peroxide during leaching, while changes in sulfuric acid concentration were minor. During recirculation of the leachate with up to 5 cycles, copper recovery and product purity remained at high levels while acid consumption was reduced by 60%.


2021 ◽  
Vol 9 (5) ◽  
pp. 895
Author(s):  
Carlotta Alias ◽  
Daniela Bulgari ◽  
Fabjola Bilo ◽  
Laura Borgese ◽  
Alessandra Gianoncelli ◽  
...  

A low-energy paradigm was adopted for sustainable, affordable, and effective urban waste valorization. Here a new, eco-designed, solid-state fermentation process is presented to obtain some useful bio-products by recycling of different wastes. Urban food waste and scraps from trimmings were used as a substrate for the production of citric acid (CA) by solid state fermentation of Aspergillus niger NRRL 334, with a yield of 20.50 mg of CA per gram of substrate. The acid solution was used to extract metals from waste printed circuit boards (WPCBs), one of the most common electronic waste. The leaching activity of the biological solution is comparable to a commercial CA one. Sn and Fe were the most leached metals (404.09 and 67.99 mg/L, respectively), followed by Ni and Zn (4.55 and 1.92 mg/L) without any pre-treatments as usually performed. Commercial CA extracted Fe more efficiently than the organic one (123.46 vs. 67.99 mg/L); vice versa, biological organic CA recovered Ni better than commercial CA (4.55 vs. 1.54 mg/L). This is the first approach that allows the extraction of metals from WPCBs through CA produced by A. niger directly grown on waste material without any sugar supplement. This “green” process could be an alternative for the recovery of valuable metals such as Fe, Pb, and Ni from electronic waste.


2021 ◽  
pp. 128512
Author(s):  
Shun-xiang Shi ◽  
Chun-chen Nie ◽  
Hong-hao Chang ◽  
Peng Wu ◽  
Zheng-jie Piao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document