scholarly journals Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents

2010 ◽  
Vol 180 (1-3) ◽  
pp. 347-353 ◽  
Author(s):  
Manuela D. Machado ◽  
Eduardo V. Soares ◽  
Helena M.V.M. Soares
2008 ◽  
Vol 99 (7) ◽  
pp. 2107-2115 ◽  
Author(s):  
Manuela D. Machado ◽  
Mónica S.F. Santos ◽  
Cláudia Gouveia ◽  
Helena M.V.M. Soares ◽  
Eduardo V. Soares

2018 ◽  
Vol 13 (1) ◽  
pp. 219-228 ◽  
Author(s):  
Kasmi Mariam ◽  
Elleuch Lobna ◽  
Abidi Haifa ◽  
Cherni Yassmine ◽  
Hosni Cyrine ◽  
...  

Abstract In this study the biotreatability of Jebel Chakir landfill leachate (Tunisia) using a mixture of dairy industry reject (bactofugate) and Aloe sp. leaf gel was evaluated. The effect of Aloe gel fermentation using Saccharomyces cerevisiae yeast strain was investigated against some selected bacterial and fungal strains. The inoculation size effect of the treatment mixtures (2, 6, 10 and 12%) in the treatment efficiency was also studied. The obtained results showed that when natural Aloe gel and bactofugate mixtures were used the recorded chemical oxygen demand removal rates exceeded 56% within 48 h of treatment. Whereas, the use of the fermented Aloe gel in the treatment mixtures has promoted the organic matter removal to reach 72%.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3624 ◽  
Author(s):  
Inga Zinicovscaia ◽  
Nikita Yushin ◽  
Daler Abdusamadzoda ◽  
Dmitrii Grozdov ◽  
Margarita Shvetsova

The performance of the brewer’s yeast Saccharomyces cerevisiae to remove metal ions from four batch systems, namely Zn(II), Zn(II)-Sr(II)-Cu(II), Zn(II)-Ni(II)-Cu(II), and Zn(II)-Sr(II)-Cu(II)-Ba(II), and one real effluent was evaluated. Yeast biosorption capacity under different pH, temperature, initial zinc concentration, and contact time was investigated. The optimal pH for removal of metal ions present in the analyzed solution (Zn, Cu, Ni, Sr, and Ba) varied from 3.0 to 6.0. The biosorption process for zinc ions in all systems obeys Langmuir adsorption isotherm, and, in some cases, the Freundlich model was applicable as well. The kinetics of metal ions biosorption was described by pseudo-first-order, pseudo-second-order, and Elovich models. Thermodynamic calculations showed that metal biosorption was a spontaneous process. The two-stage sequential scheme of zinc ions removal from real effluent by the addition of different dosages of new sorbent allowed us to achieve a high efficiency of Zn(II) ions removal from the effluent. FTIR revealed that OH, C=C, C=O, C–H, C–N, and NH groups were the main biosorption sites for metal ions.


Sign in / Sign up

Export Citation Format

Share Document