Valorisation of electric arc furnace steel slag as raw material for low energy belite cements

2011 ◽  
Vol 196 ◽  
pp. 287-294 ◽  
Author(s):  
R.I. Iacobescu ◽  
D. Koumpouri ◽  
Y. Pontikes ◽  
R. Saban ◽  
G.N. Angelopoulos
Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1347 ◽  
Author(s):  
Pao Ter Teo ◽  
Siti Koriah Zakaria ◽  
Siti Zuliana Salleh ◽  
Mustaffa Ali Azhar Taib ◽  
Nurulakmal Mohd Sharif ◽  
...  

Steel slag is one of the most common waste products from the steelmaking industry. Conventional methods of slag disposal can cause negative impacts on humans and the environment. In this paper, the process of steel and steel slag production, physical and chemical properties, and potential options of slag recycling were reviewed. Since steel is mainly produced through an electric arc furnace (EAF) in Malaysia, most of the recycling options reviewed in this paper focused on EAF slag and the strengths and weaknesses of each recycle option were outlined. Based on the reports from previous studies, it was found that only a portion of EAF slag is recycled into more straightforward, but lower added value applications such as aggregates for the construction industry and filter/absorber for wastewater treatments. On the other hand, higher added value recycling options for EAF slag that are more complicated such as incorporated as raw material for Portland cement and ceramic building materials remain at the laboratory testing stage. The main hurdle preventing EAF slag from being incorporated as a raw material for higher added value industrial applications is its inconsistent chemical composition. The chemical composition of EAF slag can vary based on the scrap metal used for steel production. For this, mineral separation techniques can be introduced to classify the EAF slag base on its physical and chemical compositions. We concluded that future research on recycling EAF slag should focus on separation techniques that diversify the recycling options for EAF slag, thereby increasing the waste product’s recycling rate.


2011 ◽  
Vol 40 (4) ◽  
pp. 1153-1161 ◽  
Author(s):  
Radmila Milačič ◽  
Tea Zuliani ◽  
Tina Oblak ◽  
Ana Mladenovič ◽  
Janez Šč ančar

2019 ◽  
Vol 116 (2) ◽  
pp. 217
Author(s):  
Xiang Lu ◽  
Wenbin Dai ◽  
Xiaoming Liu ◽  
Daqiang Cang ◽  
Liang Zhou

Electric arc furnace steel slag was modified by wastes in hot-stage process with the aim to improve the cementitious activity. Effect of basicity on cementitious activity of modified steel slag was investigated in this research. The modified slag was characterized by XRD, DTA and Raman spectra techniques to investigate the correlations between structural features and the cementitious activity. The results showed that modified steel slag with a basicity index of 1.67 possessed the highest activity index, 107%, due to the precipitation of Belite, high content of amorphous phase and low polymerization degree. The polymerization degree of modified slag was demonstrated by nonbridging oxygen per tetrahedrally coordinated cations value which was calculated through curve-fitted Raman spectra. The value of modified slag increased as the basicity promoted from 1.05 to 1.67, indicating a lower degree of polymerization. Modified slag with a basicity index of 1.86 possessed the poor cementitious activity mainly because of the significant decrease of glass phase content.


2020 ◽  
Vol 28 ◽  
pp. 101060 ◽  
Author(s):  
Nurul Hidayah Roslan ◽  
Mohammad Ismail ◽  
Nur Hafizah A. Khalid ◽  
Bala Muhammad

Sign in / Sign up

Export Citation Format

Share Document