Pilot scale feasibility study for in-situ chemical oxidation using H2O2 solution conjugated with biodegradation to remediate a diesel contaminated site

2012 ◽  
Vol 241-242 ◽  
pp. 173-181 ◽  
Author(s):  
Insu Kim ◽  
Minhee Lee
2021 ◽  
Vol 223 ◽  
pp. 136-145
Author(s):  
Zong-Han Yang ◽  
Ya-Lei Chen ◽  
Francis Verpoort ◽  
Cheng-Di Dong ◽  
Chiu-Wen Chen ◽  
...  

2014 ◽  
Vol 70 (10) ◽  
pp. 1656-1662 ◽  
Author(s):  
Lars Rønn Bennedsen ◽  
Erik Gydesen Søgaard ◽  
Jens Muff

Activated peroxygens are frequently used as active agents in in-situ chemical oxidation (ISCO) contaminated site remediation applications, and fast and simple quantitative analysis of these species on site is necessary. In this work, the use of a spectrophotometric method based on classic iodometric titration is studied for quantitative analysis of S2O82− and H2O2. Instead of a back-titration step, the absorbance of the yellow iodide colour was measured at 352 nm in the presence of a bicarbonate buffer. A linear calibration curve was obtained from 0 to 0.1 mM for both S2O82− and H2O2. By dilution, the method can be used for all concentrations typically applied in the field. Concerning pH dependence, neutral pH levels caused no significant error whereas pH levels above 8 caused a 9% and 6% deviation from the theoretical peroxygen concentrations. Furthermore, the method showed little dependence on other matrix components, and absorbance was stable (<2% change) for more than a week. Overall, the method proved to be fast and simple, which are important features for a field method.


Author(s):  
Huchuan Yan ◽  
Cui Lai ◽  
Dongbo Wang ◽  
Shiyu Liu ◽  
Xiaopei Li ◽  
...  

Refractory organic pollutants in wastewater have the characteristics of persistence and toxicity, which seriously threaten the health and safety of humans and other organisms. Many researchers have committed to developing...


RSC Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 4237-4246
Author(s):  
Tian Xie ◽  
Zhi Dang ◽  
Jian Zhang ◽  
Qian Zhang ◽  
Rong-Hai Zhang ◽  
...  

The combination of pump-and-treat and in situ chemical oxidation processes can effectively accelerate the remediation of DNAPL pollutant in groundwater.


Sign in / Sign up

Export Citation Format

Share Document