Selective metal cation concentration during the solidification of stainless steel EAF dust and slag mixtures from high temperatures for increased Cr recovery

2018 ◽  
Vol 359 ◽  
pp. 174-185 ◽  
Author(s):  
Gibeom Kim ◽  
Il Sohn
Alloy Digest ◽  
2006 ◽  
Vol 55 (5) ◽  

Abstract AK Steel 410S is a fully ferritic stainless steel with elements added to retard austenite formation at high temperatures. The resulting low hardening allows for use as oxidation-resistant parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-964. Producer or source: AK Steel.


2019 ◽  
Vol 283 ◽  
pp. 07011
Author(s):  
Didier Flotté ◽  
David Macel ◽  
Abd Ennour Bouzenad ◽  
Frédéric Navacchia

Monitoring the operation of the latest-generation nuclear reactor requires ultrasonic transducers able to operate at very high temperatures (> 600°C). To achieve this, CEA has requested from “Institut de Soudure” to help developing a new technology for these transducers compared to the one previously developed. This began with the development of a reliable assembly technique between a lithium niobate piezoelectric disc whose Curie temperature exceeds 1100°C and stainless steel discs. The chosen solution was to braze the niobate disc between two stainless steel discs. Parallel to this development, it was also necessary to develop a NDE procedure to verify the quality of the brazing assemblies. This development began with a simulation of immersion ultrasonic testing of the assemblies. The constraints were to be able to control the two brazed interfaces from the same access face, with the possibility of detecting and dimensioning defects with an equivalent diameter of 0.25 mm. This phase is important to define the optimal transducer with the associated operating conditions. The first assemblies validated the preliminary choices. To exploit the cartographies obtained, a signal processing procedure was developed. This enabled an automatic characterization of the indications observed. However, the analysis of the signals observed proved to be more complex than the one predicted by the simulation. Once the origin of the various observed signals was identified it was then possible to define windows allowing the construction of the cartographies to analyze. In case of a good quality assembly, it was possible to qualify the generated beam and to image it in the focal plane but with an observed signal having a very low damping. These first encouraging results, however, show that there is still some validation and development work to increase the sensitivity of the developed translator and its damping.


1961 ◽  
Vol 83 (2) ◽  
pp. 133-138 ◽  
Author(s):  
D. J. Baldwin ◽  
G. W. Rowe

An experimental study of the friction of metals which have been coated with inorganic films by reaction with their surrounding atmosphere. The specimens are first cleaned at high temperature in vacuo and then heated in the selected reactive vapor. Many coatings will prevent seizure and give a fairly constant but high coefficient of friction up to high temperatures. Layer-lattice compounds such as MoS2, CrCl3, and TiI2 give much lower friction at all temperatures below those at which the film decomposes or evaporates (about 850 C for molybdenum disulphide). A film of boron nitride formed on boron shows a high intrinsic friction, but this can be reduced by certain vapors or by raising the temperature above about 800 C. Most of the experiments were performed with very light loads but the films are shown to be effective under kilogram loads. A simple indentation test capable of selecting lubricants under loads up to 12 tons is described. This shows that a film formed by heating stainless steel in CCl2F2 will lubricate at 400 C when the steel is deformed by over 50 per cent.


2014 ◽  
Vol 975 ◽  
pp. 149-153 ◽  
Author(s):  
Lorenço Neckel Jr. ◽  
Arthur G. Weiss ◽  
Günter Motz ◽  
Dachamir Hotza ◽  
Márcio C. Fredel

Coatings of polysilazane-based ceramics are a promising technology for the protection of steels for applications at high temperatures and chemically harsh environments where, currently, special and expensive grades of steel are used for. To this work, the polymer-ceramic transformation behavior of VL-20 polysilazane precursor and 8%YSZ and glassceramic powders as fillers, and their variables were evaluated, and the coatings on stainless steel AISI 304 substrates were characterized. The first obtained coatings showed good adherence, but also high porosity.


2016 ◽  
Vol 35 (9) ◽  
pp. 929-940
Author(s):  
Rong-Sheng Qi ◽  
Miao Jin ◽  
Bao-Feng Guo ◽  
Xin-Gang Liu ◽  
Lei Chen

AbstractThe compressive deformation behaviors of 410 martensitic stainless steel were investigated on a Gleeble-1500 thermomechanical simulator, and the experimental stress–strain data were obtained. The measured flow stress was corrected for friction and temperature. A constitutive equation that accounts for the influence of strain was established, and the hot-processing maps at different strain were plotted. The microstructure evolution of the hot-deformation process was studied on the basis of microstructural observations at high temperatures. Phase-transformation experiments on 410 steel were conducted at high temperatures to elucidate the effects of temperature on the delta-ferrite content. The initial forging temperature and optimum process parameters were obtained on the basis of the processing map and the changes in the delta-ferrite content at high temperatures.


2007 ◽  
Vol 14 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Guo-zheng Kang ◽  
Juan Zhang ◽  
Ya-fang Sun ◽  
Qian-hua Kan

Sign in / Sign up

Export Citation Format

Share Document