Robustness of an aerobic granular sludge sequencing batch reactor for low strength and salinity wastewater treatment at ambient to winter temperatures

2020 ◽  
Vol 384 ◽  
pp. 121454 ◽  
Author(s):  
Qiulai He ◽  
Hongyu Wang ◽  
Li Chen ◽  
Shuxian Gao ◽  
Wei Zhang ◽  
...  
Author(s):  
Hazlami Fikri Basri ◽  
Aznah Nor Anuar ◽  
Mohd Hakim Ab Halim

Studying the possibility of forming aerobic granules on real domestic sewage was a logical step in the scaling-up process and development of Aerobic Granular Sludge (AGS) technology. It was noted that influent wastewater composition and Sequencing Batch Reactor (SBR) operation cycle time are important factors that can influence the formation of AGS. Therefore, this study aims to determine the suitability of influent wastewater from Bunus Wastewater Treatment Plant (WWTP) for AGS cultivation and then propose a proper SBR operation cycle time. In this study, wastewater characterization was done for the influent of wastewater treatment plant located in Bunus, Kuala Lumpur. The result was then analysed and compared with previous research to determine the suitability of AGS cultivation. The information on SBR from previous studies were also gathered to propose SBR operation cycle time that suit the Bunus WWTP influent. The findings indicate that the wastewater can be characterized as low strength domestic wastewater with low organic and nutrients content. The values of related parameters in this study have shown that influent wastewater of Bunus WWTP is suitable for cultivating AGS. For the proposed SBR operation, the cycle time is 3h, which consist of 60 min (fill), 110 min (aerate), 5 min (settle), and 5 min (discharge), respectively.


Aerobic granular sludge can be used to treat various types of wastewater, such as industrial, municipal and domestic wastewater. This study investigated the treatment of low-strength domestic wastewater while simultaneously developed aerobic granular sludge in a sequencing batch reactor (SBR). Activated sludge was used as the seeding for granulation. The results indicated good COD and ammoniacal nitrogen removal at 72% and 73%, respectively. Aerobic granular sludge was successfully developed with low sludge volume index (SVI30) of 29 mL/g, which demonstrated an excellent settling property of aerobic granular sludge. Biomass concentration increased significantly compared to the seed sludge, indicating high biomass density in the SBR system. Settling velocity of aerobic granular sludge was significantly higher compared to the conventional activated sludge. This study showed the feasibility of aerobic granular sludge to be developed using low-strength domestic wastewater. Moreover, this study demonstrated the long-term application of aerobic granular sludge in domestic wastewater treatment.


2009 ◽  
Vol 60 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
S. López–Palau ◽  
J. Dosta ◽  
J. Mata-Álvarez

Aerobic granular sludge was cultivated in a sequencing batch reactor (SBR) in order to remove the organic matter present in winery wastewater. The formation of granules was performed using a synthetic substrate. The selection parameter was the settling time, as well as the alternation of feast-famine periods, the air velocity and the height/diameter ratio of the reactor. After 10 days of operation under these conditions, the first aggregates could be observed. Filamentous bacteria were still present in the reactor but they disappeared progressively. During the start-up, COD loading was increased from 2.7 to 22.5 kg COD/(m3 day) in order to obtain a feast period between 30 and 60 minutes. At this point, granules were quite round, with a particle diameter between 3.0 and 4.0 mm and an average density of 6 g L−1. After 120 days of operation, synthetic media was replaced by real winery wastewater, with a COD loading of 6 kg COD/(m3 day). The decrease of the organic load implied a reduction of the aggregate diameter and a density increase up to 13.2 g L−1. The effluent was free of organic matter and the solids concentration in the reactor reached 6 g VSS L−1.


Sign in / Sign up

Export Citation Format

Share Document