Corrigendum to ‘A new approach to monitoring spatial distribution and dynamics of wetlands and associated flows of Australian Great Artesian Basin springs using QuickBird satellite imagery’ [Hydrol 408 (2011) 140–152]

2011 ◽  
Vol 410 (3-4) ◽  
pp. 260 ◽  
Author(s):  
Davina C. White ◽  
Megan M. Lewis
Resources ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 23
Author(s):  
Pablo Hernández-Morales ◽  
Jobst Wurl ◽  
Carlos Green-Ruiz ◽  
Diego Morata

Geo-thermalism has been widely recognized on the Baja California Peninsula, especially during the last decade. The current research, carried out on Bahia Concepcion, evidences the existence of geothermal springs, which get recharged mainly by groundwater and seawater. The groundwater can be characterized as Na+-Cl− and Na+-HCO3− type, with a pH value close to neutrality. The slightly more acidic thermal sites presented temperatures between 32 °C and 59 °C at the surface. Based on the relationships of the Cl− and Br−, as well as the B/Cl−, and Br−/Cl− ratios, seawater was recognized as the main source of salinity. The spatial distribution is explained directly through marine intrusion, or via sprays and aerosols within the rainwater. Seawater ratios in thermal springs varied from 62% to 83%, corresponding mainly to shallow inflow, but seawater inputs into the deep thermal reservoir were also recognized. Temperatures in the geothermal deep reservoir were inferred from 114 to 209 °C, calculated through the SiO2 and Na+-K+ geothermometers. In addition to previously reported thermal sites at Bahía Concepción, and based on their elevated temperatures, two new sites were identified. Another five springs do not fulfill the commonly used definition, based on differential temperature, but show the typical hydrogeochemical signature of thermal water. A new approach to identify this low-temperature geothermal-influenced spring water by its hydrogeochemical composition is presented, for which the term “Masked Geothermal Waters” (MGW) is introduced. Our findings increase the area of the geothermal anomaly and, therefore, the potential of geothermal resources. The approach proposed in this research will also be useful to identify more MGW in other coastal areas.


2021 ◽  
Vol 52 ◽  
pp. 171-183
Author(s):  
Fabrice Monna ◽  
Tanguy Rolland ◽  
Anthony Denaire ◽  
Nicolas Navarro ◽  
Ludovic Granjon ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 175-192
Author(s):  
Phil Hayes ◽  
Chris Nicol ◽  
Andrew D. La Croix ◽  
Julie Pearce ◽  
Sebastian Gonzalez ◽  
...  

AbstractThe Precipice Sandstone is a major Great Artesian Basin aquifer in the Surat Basin, Queensland, Australia, which is used for water supply and production of oil and gas. This report describes use of observed groundwater pressure responses to managed aquifer recharge (MAR) at a regional scale to test recent geological descriptions of Precipice Sandstone extent, and to inform its hydrogeological conceptualisation. Since 2015, two MAR schemes have injected over 20 GL of treated water from coal seam gas production into the Precipice Sandstone, with pressure responses rapidly propagating over 100 km, indicating high aquifer diffusivity. Groundwater modelling of injection and inversion of pressure signals using PEST software shows the spatial variability of aquifer properties, and indicates that basin in-situ stresses and faulting exert control on permeability. Extremely high permeability, up to 200 m/day, occurs in heavily fractured regions with a dual-porosity flow regime. The broader-scale estimates of permeability approach an order of magnitude higher than previous studies, which has implications for the management of water resources in the Precipice Sandstone. Results also show the Precipice Sandstone to have broadly isotropic permeability. The results also support a recent geological interpretation of the Precipice Sandstone as having more limited lateral extent than initially considered. The study shows the effective use of MAR injection data to improve geological and hydrogeological understanding through groundwater model inversion. It also demonstrates the utility of combining hydrogeological and reservoir-engineer datasets in areas explored and developed for both groundwater resources and oil and gas resources.


Sign in / Sign up

Export Citation Format

Share Document