Multi-layered coarse grid modelling in 2D urban flood simulations

2012 ◽  
Vol 470-471 ◽  
pp. 1-11 ◽  
Author(s):  
Albert S. Chen ◽  
Barry Evans ◽  
Slobodan Djordjević ◽  
Dragan A. Savić
Author(s):  
Vinay Ashok Rangari ◽  
K. Veerendra Gopi ◽  
Umamahesh V Nanduri ◽  
Roshan Bodile

2012 ◽  
Vol 426-427 ◽  
pp. 1-16 ◽  
Author(s):  
Albert S. Chen ◽  
Barry Evans ◽  
Slobodan Djordjević ◽  
Dragan A. Savić

2020 ◽  
Vol 588 ◽  
pp. 125028
Author(s):  
Afrin Hossain Anni ◽  
Sagy Cohen ◽  
Sarah Praskievicz

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1840 ◽  
Author(s):  
Li ◽  
Liu ◽  
Mei ◽  
Shao ◽  
Wang ◽  
...  

This study aims to better understand the impact of different building representations and mesh resolutions on urban flood simulations using the TELEMAC-2D model in idealized urban districts. A series of numerical models based on previous laboratory experiments was established to simulate urban flooding around buildings, wherein different building layouts (aligned and staggered) were modeled for different building representations: building–hole (BH), building–block (BB), and building–resistance (BR) methods. A sensitivity analysis of the Manning coefficient for building grids indicated that the unit-width discharge and water depth in building grids reduce as the Manning coefficient is less than 104 m-1/3⋅s. The simulated depths via the BH, BB, and BR methods were compared with the measured data in terms of three accuracy indicators: root mean square error, Pearson product–moment correlation coefficient, and Nash–Sutcliffe efficiency. Observing apparent discrepancies based on the hydrographs was difficult; however, some slight distinctions were observed based on the aforementioned three indicators. The sensitivity of 1, 2, and 5 cm mesh resolutions was also analyzed: results obtained using 1 cm resolution were better than those obtained using other resolutions. The complex flow regime around buildings was also investigated based on mesh resolution, velocity, and Froude number according to our results. This study provides key data regarding urban flood model benchmarks, focusing on the effect of different building representations and mesh resolutions.


2019 ◽  
Author(s):  
CARLOS MARTÍNEZ ◽  
ARLEX SANCHEZ ◽  
ZORAN VOJINOVIC ◽  
OSCAR HERNANDEZ

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1160 ◽  
Author(s):  
Merhawi GebreEgziabher ◽  
Yonas Demissie

Urban flooding, caused by unusually intense rainfall and failure of storm water drainage, has become more frequent and severe in many cities around the world. Most of the earlier studies focused on overland flooding caused by intense rainfall, with little attention given to floods caused by failures of the drainage system. However, the drainage system contributions to flood vulnerability have increased over time as they aged and became inadequate to handle the design floods. Adaption of the drainages for such vulnerability requires a quantitative assessment of their contribution to flood levels and spatial extent during and after flooding events. Here, we couple the one-dimensional Storm Water Management Model (SWMM) to a new flood inundation and recession model (namely FIRM) to characterize the spatial extent and depth of manhole flooding and recession. The manhole overflow from the SWMM model and a fine-resolution elevation map are applied as inputs in FIRM to delineate the spatial extent and depth of flooding during and aftermath of a storm event. The model is tested for two manhole flooding events in the City of Edmonds in Washington, USA. Our two case studies show reasonable match between the observed and modeled flood spatial extents and highlight the importance of considering manholes in urban flood simulations.


2017 ◽  
Author(s):  
Indra Riyanto ◽  
Lestari Margatama

The recent degradation of environment quality becomes the prime cause of the recent occurrence of natural disasters. It also contributes in the increase of the area that is prone to natural disasters. Flood history data in Jakarta shows that flood occurred mainly during rainy season around January – February each year, but the flood area varies each year. This research is intended to map the flood potential area in DKI Jakarta by segmenting the Digital Elevation Model data. The data used in this research is contour data obtained from DPP–DKI with the resolution of 1 m. The data processing involved in this research is extracting the surface elevation data from the DEM, overlaying the river map of Jakarta with the elevation data. Subsequently, the data is then segmented using watershed segmentation method. The concept of watersheds is based on visualizing an image in three dimensions: two spatial coordinates versus gray levels, in which there are two specific points; that are points belonging to a regional minimum and points at which a drop of water, if placed at the location of any of those points, would fall with certainty to a single minimum. For a particular regional minimum, the set of points satisfying the latter condition is called the catchments basin or watershed of that minimum, while the points satisfying condition form more than one minima are termed divide lines or watershed lines. The objective of this segmentation is to find the watershed lines of the DEM image. The expected result of the research is the flood potential area information, especially along the Ciliwung river in DKI Jakarta.


Sign in / Sign up

Export Citation Format

Share Document